187 research outputs found

    Dynamical excitonic effects in metals and semiconductors

    Full text link
    The dynamics of an electron--hole pair induced by the time--dependent screened Coulomb interaction is discussed. In contrast to the case where the static electron--hole interaction is considered we demonstrate the occurrence of important dynamical excitonic effects in the solution of the Bethe--Salpeter equation.This is illustrated in the calculated absorption spectra of noble metals (copper and silver) and silicon. Dynamical corrections strongly affect the spectra, partially canceling dynamical self--energy effects and leading to good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let

    Pairing fluctuation effects on the single-particle spectra for the superconducting state

    Full text link
    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors.Comment: 4 pages, 4 figure

    Wannier-function approach to spin excitations in solids

    Get PDF
    We present a computational scheme to study spin excitations in magnetic materials from first principles. The central quantity is the transverse spin susceptibility, from which the complete excitation spectrum, including single-particle spin-flip Stoner excitations and collective spin-wave modes, can be obtained. The susceptibility is derived from many-body perturbation theory and includes dynamic correlation through a summation over ladder diagrams that describe the coupling of electrons and holes with opposite spins. In contrast to earlier studies, we do not use a model potential with adjustable parameters for the electron-hole interaction but employ the random-phase approximation. To reduce the numerical cost for the calculation of the four-point scattering matrix we perform a projection onto maximally localized Wannier functions, which allows us to truncate the matrix efficiently by exploiting the short spatial range of electronic correlation in the partially filled d or f orbitals. Our implementation is based on the FLAPW method. Starting from a ground-state calculation within the LSDA, we first analyze the matrix elements of the screened Coulomb potential in the Wannier basis for the 3d transition-metal series. In particular, we discuss the differences between a constrained nonmagnetic and a proper spin-polarized treatment for the ferromagnets Fe, Co, and Ni. The spectrum of single-particle and collective spin excitations in fcc Ni is then studied in detail. The calculated spin-wave dispersion is in good overall agreement with experimental data and contains both an acoustic and an optical branch for intermediate wave vectors along the [100] direction. In addition, we find evidence for a similar double-peak structure in the spectral function along the [111] direction.Comment: 16 pages, 11 figures, 5 table

    Magnetic Field Effect on the Pseudogap Temperature within Precursor Superconductivity

    Full text link
    We determine the magnetic field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic attractive Hubbard model account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.Comment: 4 pages, 3 figure

    Range-separated density-functional theory with random phase approximation: detailed formalism and illustrative applications

    Full text link
    Using Green-function many-body theory, we present the details of a formally exact adiabatic-connection fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse, Gerber, Jansen, Savin and Angyan, Phys. Rev. Lett. 102, 096404 (2009). Range-separated density-functional theory approaches combining short-range density functional approximations with long-range random phase approximations (RPA) are then obtained as well-identified approximations on the long-range Green-function self-energy. Range-separated RPA-type schemes with or without long-range Hartree-Fock exchange response kernel are assessed on rare-gas and alkaline-earth dimers, and compared to range-separated second-order perturbation theory and range-separated coupled-cluster theory.Comment: 15 pages, 3 figures, 2 table

    Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover

    Full text link
    Theoretical predictions for the BCS-BEC crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of 6^6Li. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean field. Excellent agreement with experimental results is obtained. Theoretical predictions for the zero-temperature chemical potential and gap at the unitarity limit are also found to compare extremely well with Quantum Monte Carlo simulations and with recent experimental results.Comment: 4 pages, 3 eps figure

    Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    Full text link
    Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with Quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above Tc.Comment: 9 pages, 9 figures. Substantially revised version (to appear in Phys. Rev. Lett.

    The Josephson effect throughout the BCS-BEC crossover

    Full text link
    We study the stationary Josephson effect for neutral fermions across the BCS-BEC crossover, by solving numerically the Bogoliubov-de Gennes equations at zero temperature. The Josephson current is found to be considerably enhanced for all barriers at about unitarity. For vanishing barrier, the Josephson critical current approaches the Landau limiting value which, depending on the coupling, is determined by either pair-breaking or sound-mode excitations. In the coupling range from the BCS limit to unitarity, a procedure is proposed to extract the pairing gap from the Landau limiting current.Comment: 4 pages, 3 figures; improved version to appear in Phys. Rev. Let

    On the correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase

    Full text link
    The Hubbard model with finite on-site repulsion U is studied via the functional-integral formulation of the four-slave-boson approach by Kotliar and Ruckenstein. It is shown that a correct treatment of the continuum imaginary time limit (which is required by the very definition of the functional integral) modifies the free energy when fluctuation (1/N) corrections beyond mean-field are considered. Our analysis requires us to suitably interpret the Kotliar and Ruckenstein choice for the bosonic hopping operator and to abandon the commonly used normal-ordering prescription, in order to obtain meaningful fluctuation corrections. In this way we recover the exact solution at U=0 not only at the mean-field level but also at the next order in 1/N. In addition, we consider alternative choices for the bosonic hopping operator and test them numerically for a simple two-site model for which the exact solution is readily available for any U. We also discuss how the 1/N expansion can be formally generalized to the four-slave-boson approach, and provide a simplified prescription to obtain the additional terms in the free energy which result at the order 1/N from the correct continuum limit.Comment: Changes: Printing problems (due to non-standard macros) have been removed, 44 page

    Light scattering in Cooper-paired Fermi atoms

    Full text link
    We present a detailed theoretical study of light scattering off superfluid trapped Fermi gas of atoms at zero temperature. We apply Nambu-Gorkov formalism of superconductivity to calculate the response function of superfluid gas due to stimulated light scattering taking into account the final state interactions. The polarization of light has been shown to play a significant role in response of Cooper-pairs in the presence of a magnetic field. Particularly important is a scheme of polarization-selective light scattering by either spin-component of the Cooper-pairs leading to the single-particle excitations of one spin-component only. These excitations have a threshold of 2Δ2\Delta where Δ\Delta is the superfluid gap energy. Furthermore, polarization-selective light scattering allows for unequal energy and momentum transfer to the two partner atoms of a Cooper-pair. In the regime of low energy (<<2Δ<< 2\Delta) and low momentum (<2Δ/(vF)<2\Delta/(\hbar v_F), vFv_F being the Fermi velocity) transfer, a small difference in momentum transfers to the two spin-components may be useful in exciting Bogoliubov-Anderson phonon mode. We present detailed results on the dynamic structure factor (DSF) deduced from the response function making use of generalized fluctuation-dissipation theorem. Model calculations using local density approximation for trapped superfluid Fermi gas shows that when the energy transfer is less than 2Δ02\Delta_0, where Δ0\Delta_0 refers to the gap at the trap center, DSF as a function of energy transfer has reduced gradient compared to that of normal Fermi gas.Comment: single column, 26 pages, 10 figures; Title changed, discussion on experimental implication added in concluding section. Accepted for publication in J. Phys.
    corecore