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We present a computational scheme to study spin excitations in magnetic materials from first principles. The
central quantity is the transverse spin susceptibility, from which the complete excitation spectrum, including
single-particle spin-flip Stoner excitations and collective spin-wave modes, can be obtained. The susceptibility
is derived from many-body perturbation theory and includes dynamic correlation through a summation over
ladder diagrams that describe the coupling of electrons and holes with opposite spins. In contrast to earlier
studies, we do not use a model potential with adjustable parameters for the electron-hole interaction but employ
the random-phase approximation. To reduce the numerical cost for the calculation of the four-point scattering
matrix we perform a projection onto maximally localized Wannier functions, which allows us to truncate the
matrix efficiently by exploiting the short spatial range of electronic correlation in the partially filled d or f
orbitals. Our implementation is based on the full-potential linearized augmented-plane-wave method. Starting
from a ground-state calculation within the local-spin-density approximation �LSDA�, we first analyze the
matrix elements of the screened Coulomb potential in the Wannier basis for the 3d transition-metal series. In
particular, we discuss the differences between a constrained nonmagnetic and a proper spin-polarized treatment
for the ferromagnets Fe, Co, and Ni. The spectrum of single-particle and collective spin excitations in fcc Ni
is then studied in detail. The calculated spin-wave dispersion is in good overall agreement with experimental
data and contains both an acoustic and an optical branch for intermediate wave vectors along the �1 0 0�
direction. In addition, we find evidence for a similar double-peak structure in the spectral function along the
�1 1 1� direction. To investigate the influence of static correlation we finally consider LSDA+U as an alter-
native starting point and show that, together with an improved description of the Fermi surface, it yields a more
accurate quantitative value for the spin-wave stiffness constant, which is overestimated in the LSDA.
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I. INTRODUCTION

Spin excitations in solids are of fundamental interest for a
wide variety of phenomena. For example, in magnetic mate-
rials at low temperatures collective spin excitations, so-
called spin waves or magnons,1 leave a mark on the trans-
port, dynamical, and thermodynamical properties. The spin
waves contribute to the specific heat with a T3/2 term in
addition to the T3 term from phonon excitations. The low-
temperature behavior of the magnetization in three-
dimensional magnetic solids is also dominated by spin-wave
excitations. In ferromagnets the magnetization drops as T3/2,
while the sublattice magnetization in antiferromagnets obeys
a T2 law.2 In low-dimensional systems spin-wave excitations
even destroy the long-range magnetic order completely at
any finite temperature T in the absence of a magnetic
anisotropy.3 As the temperature increases, additional single-
particle spin-flip processes, the so-called Stoner excitations,
take place, which further contribute to the temperature varia-
tion of the magnetization and cause a damping of the spin-
wave modes. Spin waves can also couple to charge excita-
tions around the Fermi level. Such interactions lead to a
pronounced energy renormalization in the quasiparticle band
dispersion,4 or control the spin-dependent inelastic mean free
path of hot electrons in ferromagnets.5–8 Another interesting
phenomenon is high-temperature superconductivity, in which
spin waves have been proposed as a possible mediator for the
attractive electron-electron interaction.9,10 This scenario was
recently confirmed by infrared spectroscopy and neutron-

scattering measurements for the high-temperature supercon-
ductor YBa2Cu3O6.92.

11,12

Spin excitations in solids are also of central interest in the
field of spintronics. The writing process of magnetic infor-
mation in a giant magneto resistance or tunnel magneto re-
sistance device is closely related to the rotation of the mag-
netization, a process generating and radiating spin waves at
all wavelengths, whose damping rate is an important param-
eter determining the writing time.13 Spin waves are also gen-
erated during the reading process, as hot electrons impinge at
the interfaces between the insulating barrier and the magnetic
electrodes of magnetic tunnel junctions, which causes a re-
duction in the magnetoresistance.14

The properties and physics of spin waves evidently com-
prise an unusually rich area of research. A lot of information
about the spin dynamics in solids can be obtained from the
magnetic response function �or dynamical spin susceptibil-
ity�. The spectrum of magnetic excitations corresponds to the
poles of the response function and can be directly compared
with experiments such as inelastic neutron scattering. In this
way it provides insight into the nature of the exchange cou-
pling and the complex magnetic order. The magnetic re-
sponse function is thus a central quantity for the theoretical
description of magnetic materials.

So far most theoretical studies of magnetic excitations in
solids were based on an adiabatic treatment of the spin de-
grees of freedom in which the slow motion of the magnetic
moments and the fast motion of the electrons are separated
by mapping the complex itinerant electron problem onto the
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classical Heisenberg Hamiltonian with exchange parameters
obtained from constrained density-functional theory �DFT�
calculations.15–22 Within this approach the spin-wave excita-
tions can be calculated efficiently, whereas the single-particle
Stoner excitations are neglected. Furthermore, the spin-wave
lifetimes are not accessible. From a fundamental point of
view, the Heisenberg model is justified only for local-
moment systems such as insulators and rare earths, which
possess well-defined spin-wave modes over the entire Bril-
louin zone, so that the adiabatic approximation is reliable.
For itinerant-electron magnets the adiabatic approximation
yields reasonable results only in the long-wavelength region,
i.e., for small wave vectors. For short wavelengths the dis-
crepancy with experiments can be large, however. For ex-
ample, the multiple branches in the spin-wave dispersion of
3d ferromagnets cannot be captured.23,24

First-principles calculations of the magnetic response
function using realistic energy bands and wave functions are
very rare. Initial attempts by Cooke et al.23–26 within the
framework of many-body perturbation theory �MBPT� were
based on a tight-binding description of the electronic energy
bands. These authors studied the spin-wave dispersion of 3d
ferromagnets and obtained reasonable agreement with ex-
periments; in particular, the optical branch in the spin-wave
dispersion of fcc Ni was correctly described.25 Using a simi-
lar approach, Mills and co-workers27–30 carried out extensive
calculations to explore the spin dynamics in ultrathin ferro-
magnetic �FM� films on nonmagnetic �NM� substrates. Re-
cently more realistic treatments of the spin-wave spectra in
3d ferromagnets were reported by Savrasov31 and Buczek et
al.32 within time-dependent DFT �TDDFT� and by Karlsson
and Aryasetiawan33 within MBPT. However, in the latter
work the authors used a simplified model potential with an
adjustable parameter to estimate the matrix elements of the
screened Coulomb interaction. Under these circumstances
both TDDFT and MBPT appear to give similar results for the
spin-wave dispersions of Fe and Ni. The results for Fe are in
good agreement with available experimental data, while for
Ni the optical branch is too high in energy, which was attrib-
uted to the overestimation of the exchange splitting of Ni
within the underlying local-spin-density approximation
�LSDA�.33

The aim of the present work is to develop a practical
computational scheme to study excitation spectra of mag-
netic materials from first principles. The magnetic response
function is calculated within a many-body context following
the formalism given in Ref. 34. To study collective spin-
wave excitations we include vertex corrections in the form of
ladder diagrams, which describe the coupling of electrons
and holes with opposite spins via the screened Coulomb in-
teraction. In analogy to the T matrix that describes the
particle-particle scattering channel, here we use the same
term for the electron-hole channel in agreement with the
definition of Strinati.35 In contrast to earlier treatments, the
matrix elements of the screened Coulomb potential are cal-
culated entirely from first principles. In order to reduce the
numerical cost for the calculation of the four-point T matrix
we exploit a transformation to maximally localized Wannier
functions �MLWFs�, which provide a more efficient basis to
study local correlations than extended Bloch states.36–46 This

use of localized orbitals makes our scheme very efficient for
complex magnetic materials with many atoms per unit cell.
Our implementation is based on the full-potential linearized
augmented-plane-wave �FLAPW� method. In the following
we first calculate the matrix elements of the Coulomb poten-
tial for the 3d transition-metal series in the Wannier basis and
perform extensive convergence tests. The magnetic excita-
tions in fcc Ni are then studied in detail based on the LSDA
and LSDA+U methods. We find that both approaches yield
qualitatively similar results for the spin-wave spectra and
overall dispersion. However, the static correlation effects
seem to be important for the spin-wave stiffness constant,
which is overestimated within LSDA. In contrast to some
previous theoretical studies,25,33 our calculations clearly in-
dicate the existence of an optical branch in the spin-wave
dispersion curve of Ni along the �1 1 1� in addition to that
along the �1 0 0� direction in the Brillouin zone. In general,
the obtained results are in good agreement with available
experimental data.

This paper is organized as follows. In Sec. II we describe
the computational method. Section III contains the results for
the matrix elements of the screened Coulomb potential for
the 3d transition metals. In Sec. IV we present results for the
magnetic excitations in fcc Ni together with a detailed dis-
cussion. In Sec. V we summarize our conclusions and give
an outlook. Unless otherwise indicated, Hartree atomic units
are used throughout.

II. COMPUTATIONAL METHOD

A. Magnetic response function

The time-ordered magnetic response function �or dynami-
cal spin susceptibility� is given in real space by the correla-
tion function

Rij�1,2� = − i�T��̂i�1�,�̂ j�2��� , �1�

where T is the time-ordering operator and �̂i�1� are the spin-
density operators with i� �x ,y ,z ,− ,+�, where − and + cor-
respond to the spin annihilation ��̂−= �̂x− i�̂y� and creation
��̂+= �̂x+ i�̂y� operators, respectively. For simplicity we use
the short-hand notation 1= �r1 , t1�. The expectation value of
�̂i�1� with respect to the many-body ground state is given by

��̂i�1�� = − i	
�,�

���
i G���1,1+� �2�

with the Pauli spin matrices �i, the single-particle Green’s
function G, and the spin indices � and �. The notation 1+

indicates that the time variable is increased by an infinitesi-
mal to ensure the proper time ordering t1

+� t1. The magnetic
response function can be obtained from the spin density by
the functional derivative

Rij�1,2� =
���̂i�1��
�Bj�2�

, �3�

where i and j correspond to the components of the magneti-
zation and the magnetic field vector, respectively. The latter
incorporates a factor g�B /2, where the �B denotes the Bohr
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magneton and g the electron g factor, so that the Zeeman
term in the Hamiltonian operator takes the form +B ·�.

B. T-matrix approximation

The single-particle Green’s function in Eq. �2� is given by
the Dyson equation

G���1,2� = G�
0�1,2���� + 	

�

 
 G�

0�1,3�

� 	���3,4�G���4,2�d3d4, �4�

where G0 is the spin-diagonal Green’s function of the non-
interacting Hartree system and 	 the nonlocal dynamic self-
energy, which incorporates all exchange-correlation effects.
With the identity

�G���1,3�
�Bj�2�

= − 	
�,�

 
 G���1,4�

�G��
−1�4,5�

�Bj�2�
G���5,3�d4d5

�5�

one can rewrite the magnetic response function Eq. �3� as

Rij�1,2� = − i 	
�,�,�,�

���
i 
 
 G���1,3�����

j ��2 – 3�

� ��3 – 4� +
�	���3,4�

�Bj�2� �G���4,1+�d3d4. �6�

In this work we use the GW approximation for the
self-energy47

	���3,4� = iG���3,4�W�3,4� . �7�

The functional derivative of the self-energy with respect to
the external magnetic field is then given by

�	���3,4�
�Bj�2�

= i
�G���3,4�

�Bj�2�
W�3,4� + iG���3,4�

�W�3,4�
�Bj�2�

.

�8�

For systems with a collinear magnetic ground state only the
first term on the right-hand side yields a nonzero contribution
to the magnetic response function.34 Furthermore, in this
case the Green’s function is diagonal in spin space and can
be written as G���1,2�=G��1,2����. The dynamically
screened Coulomb potential W�3,4� is given by

W�3,4� = v�3,4� +
 
 v�3,5�P�5,6�W�6,4�d5d6, �9�

where v�3,4�=��t3− t4� / r3−r4 is the bare Coulomb poten-
tial and P�5,6� the polarizability in the random-phase ap-
proximation �RPA�. The latter is expressed by

P�5,6� = − 	
�

K���5,6;6,5� , �10�

where the kernel K is defined as

K���1,3;4,2� = iG��1,3�G��4,2+� . �11�

After collecting all terms we obtain

Rij�1,2� = − 	
�,�

���
i ���

j �K���1,2;2,1� + L���1,2;2,1��

�12�

for the magnetic response function. The second contribution
is given by

L���1,2;2,1� =
 
 
 
 K���1,3;4,1�T���3,5;6,4�

� K���5,2;2,6�d3d4d5d6, �13�

where the T matrix obeys the Bethe-Salpeter equation

T���1,3;4,2� = W�1,2���1 – 3���2 – 4� + W�1,2�

�
 
 K���1,5;6,2�T���5,3;4,6�d5d6.

�14�

The first term in Eq. �12� represents the response of the non-
interacting system, i.e., the Kohn-Sham spin susceptibility.
The second term contains the T matrix, which describes dy-
namic correlation in the form of repeated scattering events of
particle-hole pairs with opposite spins and is responsible for
the occurrence of collective spin-wave excitations. The
Feynman diagrams for the magnetic response function R and
the T matrix are displayed in Fig. 1.

For a practical evaluation of the magnetic response func-
tion we replace the full renormalized Green’s function
G��1,2� by an appropriate mean-field approximation
�LSDA, LSDA+U, etc.�. Moreover, we employ an instanta-
neous interaction of the form W�r1 ,r2 ; t1− t2�
�W�r1 ,r2���t1− t2� with W�r1 ,r2�=�−



 W�r1 ,r2 ;��d� in Eq.
�14�. This is justified by the observation that the matrix ele-
ments of W�r1 ,r2� do not vary strongly in the low-frequency
region ��1 eV�, in which the spin-wave excitations
occur.48,49 Under these circumstances it is sufficient to calcu-
late the kernel Eq. �11� for t2= t1 and t4= t3. In fact, due to
time translation symmetry the resulting expression depends
only on the difference t1− t3 and is given by the Fourier
transform of

�

+ T

(b)= +T T

(a)

β

α

β

α α

β

α

β
2 4

1 31 3

2 4

1 5 7 3

2 6 8 4

FIG. 1. Diagrammatic representation of �a� the magnetic re-
sponse function and �b� the T matrix.
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K���r1,r3;r4,r2;�� = 	
k,m

occ

	
k�,m�

unocc

���km
� �r1��km

�� �r3��k�m�
� �r4��k�m�

�� �r2�

� + ��k�m�
� − �km

� � − i�

−
�k�m�

� �r1��k�m�
�� �r3��km

� �r4��km
�� �r2�

� − ��k�m�
� − �km

� � + i�
� ,

�15�

where �km
� �r� and �km

� are the LSDA �LSDA+U� eigenstates
and eigenvalues, respectively.

C. Implementation in the Wannier basis

In order to reduce the numerical cost for the calculation of
the four-point kernel K we exploit a transformation to maxi-
mally localized Wannier functions, which allows us to effi-
ciently truncate the matrix in real space. The generalized
Wannier functions wnR

� �r� with orbital index n and spin � at
the site R are defined as Fourier transforms of the Bloch
states �km

� �r� according to

wnR
� �r� =

1

N
	
k

e−ik·R	
m

Umn
��k��km

� �r� =
1

N
	
k

e−ik·Rwkn
� �r� ,

�16�

where N is the number of discrete k points in the full Bril-
louin zone and Umn

��k� denote the transformation matrices. The
latter are determined by minimizing the spread

� = 	
n,�

��wn0
� r2wn0

� � − �wn0
� rwn0

� �2� , �17�

where the sum runs over all Wannier functions. We employ
the algorithm for minimizing the spread initially proposed by
Marzari and Vanderbilt36 for isolated groups of bands and
later extended to entangled energy bands.37

The matrix elements of the screened Coulomb potential in
the MLWF basis are given by

Wn1R1n3R3;n4R4n2R2

�� =
 
 wn1R1

�� �r�wn3R3

� �r�W�r,r��

� wn4R4

�� �r��wn2R2

� �r��d3rd3r�. �18�

The screened potential W�r ,r�� itself is calculated within the
RPA using the mixed product basis.50–52 As we use only the
on-site matrix elements of W, we set R1=R2=R2=R4 and
eventually obtain

Wn1n3;n4n2

�� =
1

N3 	
k,q1,q2

	
I,J

	
m1,m2,m3,m4

Um1n1

��k+q1��Um2n2

��k+q2�

� Um3n3

��q1�Um4n4

��q2����k+q1m1

� �q1m3

� M̃Ik�

� �MIkW�r,r��MJk��M̃Jk�q2m4

� �k+q2m2

� � ,

�19�

where MIk�M̃Ik� are the biorthogonal basis functions of the
mixed product basis, which satisfy the relation

	
I,k

MIk��M̃Ik = 1 �20�

in the Hilbert space of the wave-function products.
The next step is the calculation of the kernel K. The pro-

jection of the Bloch states onto the Wannier orbitals yields


 wnR
���r��km

� �r�d3r = Umn
��k��eik·R. �21�

If we perform a lattice Fourier transformation, then Eq. �15�
takes the form

Kn1n3;n4n2

�� �q,�� =
1

N
	
k

	
m

occ

	
m�

unocc �Umn1

��k�Umn3

��k��Um�n4

��k+q�Um�n2

��k+q��

� + ��k+qm�
� − �km

� � − i�

−
Um�n1

��k+q��Um�n3

��k+q�Umn4

��k��Umn2

��k�

� − ��k+qm�
� − �km

� � + i�
� �22�

in the Wannier basis. Instead of a direct evaluation of this
expression, we first calculate the corresponding spectral
function

Sn1n3;n4n2

�� �q,�� =
1

N
	
k

	
m

occ

	
m�

unocc

�Um�n1

��k+q��Um�n3

��k+q�Umn4

��k��

� Umn2

��k���� − �k+qm�
� + �km

� � − Umn1

��k�Umn3

��k��

� Um�n4

��k+q�Um�n2

��k+q����� + �k+qm�
� − �km

� �� ,

�23�

which equals the probability distribution for spin-flip transi-
tions between occupied and unoccupied states with the en-
ergy and momentum difference � and q. Once the spectral
function is known, we use a Hilbert transformation to calcu-
late the kernel

Kn1n3;n4n2

�� �q,�� = − P

−



 Sn1n3;n4n2

�� �q,���

� − ��
d��

+ i�Sn1n3;n4n2

�� �q,��sgn��� , �24�

where P indicates the Cauchy principal value.
With the kernel K and the screened Coulomb potential W

we can construct the T matrix according to Eq. �14�, which in
the MLWF basis takes the form

ŞAŞIOĞLU et al. PHYSICAL REVIEW B 81, 054434 �2010�

054434-4



Tn1n3;n4n2

�� �q,�� = Wn1n3;n4n2

�� + 	
n5,n6,n7,n8

Wn1n5;n6n2

��

�Kn5n7;n8n6

�� �q,��Tn7n3;n4n8

�� �q,�� �25�

and can be solved by a matrix inversion for a set of q and �
values. Finally, the magnetic response function is given by

Rij�q,�� = − 	
�,�

	
k

	
n1,n2,n3,n4

���
i ���

j �qw̃n1k+q
� w̃n2k

�� �

��Kn1n3;n4n2

�� �q,�� + Ln1n3;n4n2

�� �q,����w̃n3k+q
� w̃n4k

�� q�

�26�

with

�qw̃n1k+q
� w̃n2k

�� � =
 e−iq·rw̃n1k+q
� �r�w̃n2k

�� �r�d3r . �27�

The tilde denotes the orthonormalized products of Wannier
functions. Although the Wannier functions themselves form
an orthonormal basis set with �wnk

� wn�k�
� �=N�nn��kk����,

their products do not satisfy this orthonormality condition.
Therefore, we explicitly orthonormalize the products accord-
ing to

w̃n1k+q
� w̃n2k

�� � = 	
n3,n4

�O�q,k�−1/2�n1n2,n3n4

�� wn3k+q
� wn4k

�� � ,

�28�

where the overlap matrix is defined as

On1n2,n3n4

�� �q,k� = �wn1k+q
� wn2k

�� wn3k+q
� wn4k

�� � . �29�

In practice, this orthonormalization can be performed in the
final step of the calculation, i.e., in the projection of the
magnetic response function R onto plane waves.

The spin-wave spectra are obtained from the imaginary
part of the transverse magnetic response function R−+�q ,��,
which exhibits peaks at the spin-wave energies correspond-
ing to the wave vector q. The half width of a peak is in-
versely proportional to the lifetime of the excitation.

D. Computational details

All ground-state calculations are carried out using the
FLAPW method as implemented in the FLEUR code,53 ini-
tially within the LSDA for the exchange-correlation
potential.54 We use 4.5 bohr−1 as a cutoff for the plane
waves and lcut=10 for the angular momentum for all 3d tran-
sition metals under consideration. In addition, the LSDA
+U method with U=1.9 eV and J=1.2 eV is employed to
reveal the correlation effects on the magnetic excitation spec-
tra of Ni. In practice, the U and J values can either be chosen
as empirical parameters or obtained from first-principles cal-
culations by employing methods such as constrained LSDA
�Ref. 55� or constrained RPA,48,49,56 in which the screening
due to the 3d electrons is excluded. However, due to s-d
hybridization in the 3d transition metals the constrained RPA
yields different values for U and J depending on the proce-
dure used for excluding 3d-3d transitions in the polarization
function. For example, Miyake et al.56 found 3.7 eV for U in

fcc Ni if the s-d hybridization is switched off, whereas U
reduces to 2.8 eV if the s-d hybridization is retained. On the
other hand, our calculations showed that using U and J val-
ues from the constrained LSDA or from constrained RPA
within the LSDA+U scheme yields unsatisfactory results for
the magnetic moment, exchange splitting, and spin-wave dis-
persion of fcc Ni compared to experiments. For this reason
we use the empirical values for U and J given above, which
improve the Fermi surface and do not change the magnetic
moment substantially.57 Furthermore, these values yield the
correct magnetic anisotropy energy and direction of the mag-
netization.

The MLWFs are constructed with the WANNIER90 code,58

which was recently interfaced to the FLAPW method.59 The
screened Coulomb potential in the RPA is calculated with the
SPEX code52,60 using the mixed product basis and then pro-
jected onto the MLWF basis. The total number of functions
in the mixed product basis is 180–200, and 95–100 unoccu-
pied states are included in the calculation of the polarizabil-
ity. Finally, we note that although the MLWFs provide a
minimal basis set for the construction of the T matrix, the
computational time scales as the fourth power of the number
of Wannier functions. The most expensive part in our scheme
is the calculation of the kernel K, because it requires a large
number of k points for proper convergence �see Sec. IV�. In
contrast, the screened Coulomb potential W is less sensitive
to the k-point sampling, i.e., it is already converged for a
substantially smaller number of k points.

III. MATRIX ELEMENTS OF THE COULOMB
POTENTIAL

As a first step we calculate the matrix elements of the
screened Coulomb potential W for the series of 3d transition
metals, because these matrix elements are a crucial ingredi-
ent for the construction of the magnetic response function. In
previous treatments of spin waves in a many-body context
the Coulomb interaction was chosen either as a simple
Hubbard-type U parameter or as a model potential with an
adjustable range parameter.24,25,33 Recent ab initio studies of
the bare and the screened Coulomb interaction in 3d transi-
tion metals focused only on the NM state.48,56,61–66 Here we
present a detailed study of the matrix elements in the MLWF
basis for the proper FM state of the 3d transition metals Fe,
Co, and Ni. For comparison with previous works the NM
states of these three elements and the rest of the 3d series are
considered, too. We focus especially on bcc Fe to investigate
the effect of the exchange splitting on the Coulomb matrix
elements, because bcc Fe has the largest exchange splitting
among the 3d ferromagnets. Previous studies showed that,
similar to insulators, in 3d transition metals the Wannier
functions with d character are exponentially localized.63 The
correlation effects hence take place predominantly within the
same atomic site.49 Our calculations confirm these findings.
As the off-site matrix elements of the screened Coulomb
potential are at least two orders of magnitude smaller than
the on-site ones, we only consider the latter. The strong lo-
calization of the 3d orbitals can be seen in Fig. 2, where we
present eg-like �3d3z2−r2 and 3dx2−y2� MLWFs for bcc Fe. The
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isosurface corresponds to 10% of the maximum amplitude of
the MLWFs.

To begin with, we define the average on-site diagonal and
off-diagonal matrix elements of the direct and exchange
Coulomb potential as

Ũ =
1

5 	
n

�3d�

Wnn;nn
�� , �30�

Ũ� =
1

20 	
m,n

�m�n�

�3d�

Wmm;nn
�� , �31�

J̃ =
1

20 	
m,n

�m�n�

�3d�

Wmn;nm
�� . �32�

Although the matrix elements of the Coulomb potential are
formally spin dependent due to the spin dependence of the
MLWFs, we find that this dependence is negligible in prac-
tice, i.e., W↑↑�W↓↓�W↑↓.

In Fig. 3�a� we present a convergence study for the aver-
age on-site diagonal matrix elements of the bare and the

screened Coulomb interaction �Ũ� between the 3d orbitals as
a function of the number of k points for the NM and the FM
states of bcc Fe. Figure 3�b� shows the same matrix elements
as a function of the number of bands used in the construction
of the MLWFs. We observe a fast k-point convergence but a
relatively slow convergence with respect to the number of

bands. In fact, the screened Ũ is not completely converged
even with 60 bands. The large difference between the NM
and FM states will be discussed below.

The increase in the matrix elements of the Coulomb po-
tential with the number of bands can be explained by the
localization of the Wannier functions. In Fig. 3�c� we show
the spread � for the 3d orbitals as a function of the number
of bands. It can clearly be seen that � decreases if the num-
ber of bands increases, indicating that the 3d orbitals become

more localized, which in turn gives rise to a larger Ũ. For the
rest of the 3d transition-metal series the behavior of the Cou-
lomb matrix elements with respect to the number of bands is
very similar to bcc Fe. In the rest of this section we use six

bands and an 8�8�8 k-point mesh in order to compare our
results with previously published data that adopted the same
parameter settings.

In Table I we present the on-site matrix elements of the
screened Coulomb potential for the NM and FM states of bcc
Fe. Tables II and III contain the values for the FM state of
fcc Co and Ni. For all three systems the average values for

the diagonal �Ũ� and off-diagonal �Ũ� , J̃� matrix elements
are given in Table IV. We note that the splitting of the diag-
onal matrix elements by the crystal-field effect is quite pro-
nounced. For bcc Fe the eg-like diagonal elements are larger
than the t2g-like ones in the FM state, while in the NM state
it is just the opposite. This means that the strongest interac-
tion takes place between the electrons in the eg-like �t2g-like�
orbitals for the FM �NM� state, because these are more lo-
calized. In the case of fcc Ni the situation is very similar.
However, in fcc Co the splitting of the diagonal Coulomb
matrix elements by the crystal-field effect is different. In the
NM state �results not shown� all diagonal elements assume

FIG. 2. �Color online� eg-like �3d3z2−r2 and 3dx2−y2� maximally
localized Wannier functions for bcc Fe. The different tints denote
regions with opposite sign.
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the average spread of the 3d orbitals.
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similar values, while in the FM state �see Table II� the
t2g-like diagonal elements are larger than the eg-like ones.

Figure 4 shows the average bare and screened on-site di-

rect �Ũ� Coulomb matrix elements for the series of 3d tran-
sition metals in the NM state. Results for the FM state of Fe,
Co, and Ni are also included. Note that among all considered
systems only the first three elements are not magnetic, while
Cr and Mn order antiferromagnetically and Fe, Co, and Ni

are ferromagnetic. The bare Ũ for the NM state increases
linearly from 14 eV for Sc to 25 eV for Ni. This stems from
the fact that, as one moves from the left to the right within
one row of the periodic table, the nuclear charge increases
and causes the 3d wave functions to contract. Hence the
localization of the 3d electrons increases, giving rise to the

observed trend for Ũ. However, this trend is not observed for
the screened Coulomb interaction, where the calculated val-

ues lie between 0.8 and 1.5 eV. As already seen in Table I,
the matrix elements of the screened Coulomb potential de-
pend on the magnetic state. Figure 4 indicates that the Ũ
values for the NM and FM states of Fe, Co, and Ni are also
rather different, and this difference increases with the ex-
change splitting in the Ni-Co-Fe sequence. This observation
can be qualitatively explained by the density of states �DOS�
around the Fermi level presented in Fig. 5. As the screened
Coulomb interaction depends on the polarizability, the num-
ber of occupied and unoccupied states around the Fermi level
plays an important role in determining its strength. bcc Fe in
the NM state has the largest DOS around the Fermi energy
and hence the smallest Coulomb matrix elements. However,
for FM Fe the majority and minority-spin peaks at the Fermi
level are shifted to lower and higher energies, respectively,
due to the exchange field, leading to a lower DOS at the
Fermi level. As a consequence, we obtain larger matrix ele-

TABLE I. Screened on-site direct �Ũmn=Wmm,nn
�� � and exchange �J̃mn=Wmn,nm

�� � Coulomb matrix elements
between the 3d orbitals for FM bcc Fe within LSDA. In parentheses we show results for the NM state. We
include six bands in the construction of the MLWFs. The indices 1 and 2 �3, 4, and 5� correspond to the
eg-like �t2g-like� Wannier orbitals. All energies are in electron volt.

Ũmn 1 2 3 4 5

1 1.63 �0.62� 0.35 �0.05� 0.64 �0.20� 0.64 �0.20� 0.31 �0.07�
2 0.35 �0.05� 1.63 �0.62� 0.42 �0.12� 0.42 �0.12� 0.75 �0.25�
3 0.64 �0.20� 0.42 �0.12� 1.33 �0.96� 0.38 �0.17� 0.38 �0.17�
4 0.64 �0.20� 0.42 �0.12� 0.38 �0.17� 1.33 �0.96� 0.38 �0.17�
5 0.31 �0.07� 0.75 �0.25� 0.38 �0.17� 0.38 �0.17� 1.33 �0.96�

J̃mn 1 2 3 4 5

1 0.64 �0.28� 0.41 �0.30� 0.41 �0.30� 0.56 �0.37�
4 0.64 �0.28� 0.51 �0.35� 0.51 �0.35 0.35 �0.27�
3 0.41 �0.30� 0.51 �0.35� 0.47 �0.41� 0.47 �0.41�
2 0.41 �0.30� 0.51 �0.35� 0.47 �0.41� 0.47 �0.41�
5 0.56 �0.37� 0.35 �0.27� 0.47 �0.41� 0.47 �0.41�

TABLE II. The same as Table I for the screened Coulomb potential for the FM state of fcc Co.

Ũmn 1 2 3 4 5

1 1.20 0.22 0.54 0.51 0.24

2 0.22 1.20 0.36 0.32 0.59

3 0.54 0.36 1.45 0.38 0.39

4 0.51 0.32 0.38 1.45 0.36

5 0.24 0.59 0.39 0.36 1.45

J̃mn 1 2 3 4 5

1 0.50 0.42 0.41 0.56

2 0.50 0.53 0.50 0.36

3 0.42 0.53 0.54 0.53

4 0.41 0.50 0.54 0.55

5 0.56 0.36 0.53 0.55
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ments. For the last three elements the calculated Ũ, Ũ�, and J̃
values increase linearly for the NM state �see Table IV�,
while they are almost constant for the FM state. A compari-
son of our results for the screened Coulomb interaction in the
NM state with Ref. 49 is given in Fig. 4. The agreement for

the Ũ values is very good, and we find an equally good

agreement for the J̃ values, which are not displayed in the
figure.

To investigate the effect of static correlation on the matrix
elements of the screened Coulomb interaction we present

LSDA+U results for Ũ, Ũ�, and J̃ for the FM state of Ni in
Table IV. The average matrix elements slightly increase rela-
tive to the LSDA. Again this observation can be explained by
the scenario given above. Within the LSDA+U scheme the
exchange splitting of the Ni 3d states increases. This, in turn,
gives rise to a larger magnetic moment �see Table V� and a
reduced DOS around the Fermi level. As a consequence, the
Coulomb matrix elements increase. We expect a similar be-
havior for bcc Fe and fcc Co if the LSDA+U scheme is
employed.

Finally, we discuss the values of the matrix elements of
the screened Coulomb potential W used in the calculation of

R to make a connection with next section. The magnetic
response function can be schematically written as

R =
K

1 − WK
, �33�

where the screened Coulomb potential W in the denominator
is responsible for the formation of collective spin-wave ex-
citations. As shown above, the matrix elements of W depend
on the number of bands included in the construction of the
MLWFs. The matrix elements of K are considerably less
sensitive to the number of bands; usually ten bands are suf-
ficient for 3d ferromagnets. For this reason, in the calculation
of R one might choose a particular W that satisfies the exact
condition limq→0 ��q�=0 �Goldstone mode�. For instance, in
fcc Ni within LSDA one should include about 100 bands in
order to fulfill the Goldstone theorem. Alternatively, one can
calculate W for a given number of bands and then scale it by
a factor �, i.e., W→�W to obtain the Goldstone mode cor-
rectly. This second approach is computationally less demand-
ing and is used in the present work. For 3d ferromagnets we
calculate W by including only six bands. In the case of fcc Ni

TABLE IV. Average screened on-site direct �diagonal Ũ and

off-diagonal Ũ�� and exchange �J̃� Coulomb matrix elements be-
tween the 3d orbitals for FM 3d transition metals within LSDA. In
parentheses we show results for the NM states. For comparison the
LSDA+U results �U=1.9 eV, J=1.2 eV� for fcc Ni are pre-
sented. We include six bands in the construction of the MLWFs. All
energies are in electron volt.

Ũ Ũ� J̃

bcc Fe 1.45 �0.82� 0.47 �0.15� 0.48 �0.34�
fcc Co 1.35 �1.04� 0.39 �0.23� 0.49 �0.40�
fcc Ni 1.41 �1.28� 0.41 �0.34� 0.50 �0.46�
fcc Nia 1.49 0.44 0.51

aLSDA+U.
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FIG. 4. �Color online� Average bare and screened on-site direct

�Ũ� Coulomb matrix elements between the 3d orbitals for the series
of 3d transition metals. For comparison results from Ref. 49 �filled
spheres� are given. We include six bands in the construction of the
MLWFs.

TABLE III. The same as Table II for fcc Ni.

Ũmn 1 2 3 4 5

1 1.53 0.28 0.57 0.58 0.26

2 0.28 1.53 0.35 0.37 0.66

3 0.57 0.35 1.33 0.34 0.33

4 0.58 0.37 0.34 1.33 0.33

5 0.26 0.66 0.33 0.33 1.33

J̃mn 1 2 3 4 5

1 0.63 0.43 0.43 0.58

2 0.63 0.52 0.53 0.37

3 0.43 0.52 0.49 0.49

4 0.43 0.53 0.49 0.49

5 0.58 0.37 0.49 0.49
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the scaling factor is ��1.5 within LSDA and ��1.8 within
LSDA+U. This means that the Coulomb matrix elements
presented in Table III should be multiplied by 1.5 in the
calculation of the magnetic response function R within
LSDA for fcc Ni. The violation of the Goldstone theorem
within the present formalism stems from the approximations
made in the calculation of the kernel K and the screened
Coulomb potential W. In a fully self-consistent linear-
response calculation without additional approximations the
Goldstone theorem should be fulfilled. However, this is
hardly feasible in practice. When we manually reduce the
exchange splitting of Ni by one-half within LSDA to simu-
late the renormalized Green’s function, the scaling factor is
reduced to ��1.1. Note that the LSDA overestimates the
exchange splitting of Ni by a factor of 2 compared to
experiments.68,69 In systems like bcc Fe for which the LSDA
already provides a reasonable description of the electronic
band structure compared to the experiments69,71,72 the scaling
factor � is close to 1.

IV. MAGNETIC EXCITATIONS IN fcc Ni

This section deals with magnetic excitations in fcc Ni.
Among the 3d ferromagnets Ni is known for particularly
large discrepancies between the results from DFT calcula-
tions and experiments: The width of the occupied 3d bands
in the LSDA is about 30% larger than that found in photo-
emission experiments, whereas the sp bandwidth agrees
within 10%.73,74 Similarly, the LSDA yields a much smaller
DOS �1.9 states/�eV atom�� at the Fermi level compared to
low-temperature specific-heat data �3.0 states/�eV atom��, in-
dicating a quasiparticle mass enhancement.75 Even larger
discrepancies are obtained for the exchange splitting. Photo-
emission experiments give a small and highly anisotropic
exchange splitting, 0.3 eV at the L3 point and 0.2 eV at the
X2 point.68,69 In contrast, the LSDA yields a rather large �0.6
eV� and almost isotropic splitting.73 However, the calculated

magnetic moment turns out to be in good agreement with the
experimental value.67

Our calculated magnetic moments and exchange splittings
within the LSDA and LSDA+U are presented in Table V.
The corresponding band structures are given in Fig. 6.
Within the LSDA the band structure, exchange splitting, and
magnetic moment are in good accordance with literature
values.67,73,74 The inclusion of explicit static correlation in
the form of a Hubbard U within LSDA+U slightly changes
the electronic structure of Ni. In this case the exchange split-
ting is more anisotropic compared to the LSDA, i.e., it in-
creases at the L3 point and decreases at the X2 point �see
Table V�. The average exchange splitting increases within
the LSDA+U scheme, however, and depending on the val-
ues of the Hubbard parameters U and J the LSDA+U hence
gives rise to a larger magnetic moment.

The magnetic response function R �see Eq. �33�� contains
all relevant information about the dynamics of the spin sys-
tem. The poles of K in the numerator correspond to the en-
ergies of single-particle spin-flip Stoner excitations, while
the zeros of the denominator �1−WK� describe collective
spin-wave excitations. In the preceding section we showed
that the convergence of the matrix elements of the screened
Coulomb potential W with respect to the number of k points
�number of bands� is fast �slow�, whereas the situation is
opposite for the kernel K. For W we take the values from
Sec. III, scaled by an appropriate factor �, while we con-
struct K using five MLWFs, 15 occupied and unoccupied
bands per spin channel, and a very dense 40�40�40
k-point sampling. The Brillouin-zone summations in K are
performed with the tetrahedron method.76 The calculation of
R is carried out for a fixed q as a function of energy � up to
1.5 eV.

The remainder of this section is divided into two parts. In
the first part the single-particle Stoner excitations are pre-
sented. The second part deals with the collective spin-wave
excitations.

A. Single-particle Stoner excitations

Stoner excitations are electron transitions between bands
of opposite spin. When an electron is excited from an occu-
pied majority-spin state at k to an unoccupied minority-spin
state at k+q, it produces an electron-hole pair with triplet
spin configuration that reduces the magnetization by unity.
Therefore, these excitations are associated with longitudinal
fluctuations of the magnetization and play an important role
in determining the high-temperature properties of magnetic
materials.1 To simplify the discussion, let us consider a free-
electron gas with parabolic dispersion and a rigid exchange
splitting �Eex. The corresponding single-particle excitation
energies are given by ��q�= ��2k ·q+q2�+�Eex. For q→0
the necessary energy for such excitations equals the ex-
change splitting �Eex, but for finite q these excitations form
a continuous spectrum, which is called the Stoner continuum
and is determined by all possible values of k. The upper and
lower bounds of the Stoner continuum depend on the elec-
tronic band structure of the material. For example, in strong
ferromagnets the smallest possible excitation energy is given
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by the Stoner gap �S. On the other hand, weak ferromagnets
exhibit a vanishing gap �S=0, and thus single-particle exci-
tations do not require a finite energy for particular q values.
The lower bound is of special interest, because when the
collective spin-wave excitations enter the Stoner continuum,
they start to decay into single-particle excitations, which re-
duces their lifetime drastically. We note that the picture of
Stoner excitations in real materials is different from the free-
electron gas with a single band.77

Since the Stoner excitations are single-particle spin-flip
processes, they can be studied qualitatively at the Kohn-
Sham level. They result from the term Im K, as discussed
before. In Fig. 7 we present the imaginary part of the Kohn-
Sham magnetic response function for fcc Ni for selected
wave vectors along the �-X direction. Note that all peak
amplitudes are scaled to the same height. The energetic po-
sition and shape of the Stoner spectrum for q=0 provide a
measure for the mean exchange splitting and its variation

across the Brillouin zone. The triple-peak structure reflects
the intraband and interband transitions. The position of the
first peak gives the mean exchange splitting: 0.61 eV within
LSDA and 0.69 eV within LSDA+U. The broadening of the
peaks reflects the k dependence of the exchange splitting.
For rigidly split bands one would get � peaks. As the wave
vector increases, individual peaks become broader and are no
longer distinguishable. Since the Kohn-Sham system is non-
interacting, the spectrum does not exhibit collective magnon
modes at low energies.

Experimentally, Stoner excitations in 3d ferromagnets are
studied with spin-polarized electron-energy-loss spectros-
copy �SPEELS�, a technique that not only measures the high-
energy Stoner excitations but also low-energy collective
spin-wave modes up to the Brillouin-zone boundary. Using
SPEELS Kirschner et al.78 studied the Stoner excitation
spectrum of Ni at q�0. The authors found that the spectrum
had a broad-energy distribution of 0.3 eV �full width at half
maximum� and was centered around 0.3 eV, which is consis-
tent with the average exchange splitting determined by pho-
toemission experiments. Additionally, the width of the distri-
bution provided evidence for the pronounced k dependence
of the exchange splitting. The comparison of our calculated
spectra with the experimental data shows large discrepancies,
however. These can be attributed to the overestimated ex-
change splitting and its incorrect nearly isotropic behavior
over the Brillouin zone in the LSDA. As pointed out by Oles
and Stollhoff79 and by Liebsch,80 the large exchange splitting
in the LSDA is due to the neglect of strong correlation ef-
fects within the 3d states and anisotropic exchange. Conse-

TABLE V. Calculated magnetic moment m, exchange splitting
at X2 and L3 as well as spin-wave stiffness constant D in fcc Ni
within LSDA and LSDA+U with U=1.9 eV and J=1.2 eV. For
comparison experimental values are given.

m
��B�

X2

�eV�
L3

�eV�
D

�meV Å2�

LSDA 0.61 0.61 0.57 740

LSDA+U 0.65 0.55 0.62 540

Expt. 0.60a 0.20b 0.30c 550d

aReference 67.
bReference 68.
cReference 69.
dReference 70.
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quently, recent studies by Katsnelson and Lichtenstein81 and
by Grechnev et al.82 based on dynamical mean-field theory,
in which the exchange and correlation effects are taken into
account properly, gave much improved results for the ex-
change splitting and quasiparticle band structure of Ni.

B. Collective spin-wave excitations

In the preceding section we discussed the noninteracting
magnetic response function K, which has singularities that
correspond to single-particle Stoner excitations, usually with
a broad energy distribution. In addition, there may be other
singularities of R for a fixed q. For some ��q� outside the
Stoner continuum the denominator �1−WK� of the magnetic
response function might vanish, indicating collective spin-
wave excitations. These correspond to transverse fluctuations
of the direction of the magnetization and can be interpreted
as a coherent superposition of an electron and a hole with
opposite spins coupled via an attractive screened Coulomb
interaction W, thereby forming a bound state with energy
��q�, spin 1, and momentum q.83 As more than one particle
is involved in the excitation process, the formation of spin
waves cannot be described within a single-particle picture.

Before discussing our numerical results we briefly review
the status of experimental and theoretical studies of magnetic
excitations in fcc Ni. Starting from the mid 1960s the spin
dynamics of ferromagnetic 3d transition metals and their al-
loys were intensively investigated by inelastic neutron scat-
tering. The first experiments for Ni were performed at high
temperatures and in the low-energy region. Later the mea-
surements were extended to higher energies. The results of
these early neutron-scattering experiments and a comparison
with realistic band-structure calculations can be found in the
review article by Lowde and Windsor.84 However, the signal
intensity and energy resolution in these early experiments
were not favorable for a quantitative determination of the
spin-wave excitations in Ni. More precise measurements
were reported by Mook and co-workers70,85,86 in the 1980s
with emphasis on high energies up to 240 meV. The authors
measured the spin-wave dispersion of Ni at several tempera-
tures starting from T=4.2 K up to T�2TC, where TC
=631 K is the Curie temperature, and found that the spin-
wave dispersion was isotropic in q over the entire tempera-
ture range studied. The obtained spin-wave stiffness constant
was D=550 meV Å2 at T=4.2 K and D=505 meV Å2 at
T=295 K. The spin-wave intensity was found to decrease
faster with increasing energy in the �1 1 1� direction than
along other symmetry directions. In all directions the spin
waves eventually disappeared at some wave vector close to
the zone boundary inside the first Brillouin zone, which was
attributed to a decay into Stoner excitations. Additionally, the
authors found evidence for a second branch in the spin-wave
dispersion, i.e., an optical mode that crosses the main �1 0 0�
acoustic branch around 125 meV. However, inelastic neutron
scattering does not allow to explore the entire Brillouin zone
in 3d ferromagnets, in contrast to SPEELS. Using SPEELS
Abraham and Hopster87 attempted to study short-wavelength
�or large-wave-vector� spin excitations in Ni. However, they
only detected Stoner excitations, although the data reported

reaches down to 100 meV and the resolution of the instru-
ment �17 meV� should have been sufficient to observe col-
lective excitations. A qualitative explanation for the absence
of spin-wave peaks in the SPEELS spectrum was given by
Hong and Mills,88 who showed that the spin waves can only
be observed in SPEELS if the exchange splitting of the 3d
bands is large compared to the spin-wave excitation energies.
Indeed, spin waves up to the Brillouin-zone boundary are
observed in Fe and Co, which have substantially larger ex-
change splittings than Ni.89–92

On the theoretical side, the first attempt to use realistic
energy bands for Ni in the calculations of a generalized sus-
ceptibility was undertaken by Lowde and Windsor.84 The au-
thors calculated the magnetic susceptibility within the RPA
for rigidly spin-split bands, but the agreement with the avail-
able experimental data was not good. Cooke et al.23–25

showed that it is necessary to take the k dependence of the
exchange splitting into account for a quantitative comparison
between theory and experiment. They used a tight-binding
description of the electronic energy bands, and the ferromag-
netism was driven by an empirical on-site Coulomb interac-
tion between the 3d electrons with two adjustable param-
eters. These parameters were chosen in such a way that the
calculations reproduce the experimentally observed magnetic
moment as well as the correct t2g and eg characters of the
moment as measured in neutron magnetic-form-factor ex-
periments. The calculations of Cooke et al. not only yielded
the correct spin-wave dispersion relation, including the ap-
pearance of the optical branch in the �1 0 0� direction, but the
damping of the spin waves in the presence of the Stoner
modes was also correctly described. A similar approach was
used by Hong and Mills88 with an empirical Coulomb inter-
action that was form invariant under spin rotations. However,
they failed to find the optical mode in the spin-wave disper-
sion of Ni.

A much more accurate description of spin waves in ferro-
magnetic 3d transition metals was reported by Savrasov31

and by Karlsson and Aryasetiawan.33 In both works spin-
polarized DFT was used for the ground-state calculations.
For the transverse spin susceptibility Savrasov employed
TDDFT, while Karlsson and Aryasetiawan adopted MBPT.
Similar to the findings of Cooke et al., Savrasov obtained
two branches in the spin-wave dispersion of Ni along the
�1 0 0� direction with an optical mode at high energies.
Karlsson and Aryasetiawan confirmed these results and in-
vestigated the role of the one-particle band structure on the
spin-wave dispersion. They found a very good agreement
between theory and experiment if the LSDA exchange split-
ting was manually reduced by one-half. Additionally, the cal-
culations gave evidence for an optical branch along the �1 1
1� direction.

The optical branch in the spin-wave dispersion of Ni is
evidently a very subtle issue. So far, there has been no gen-
eral consensus in theoretical treatments concerning the sen-
sitivity of the results to the details of the electronic structure
and to the method used. In the following we hence focus on
the energy region where the double-peak structure is ob-
served in the spin-wave spectrum. To illuminate the effect of
the electronic structure on the magnetic excitation spectrum
of Ni we employ three different methods: LSDA, LSDA

WANNIER-FUNCTION APPROACH TO SPIN EXCITATIONS… PHYSICAL REVIEW B 81, 054434 �2010�

054434-11



+U, and LSDA with a reduced exchange splitting by one-
half. The calculated spin-wave dispersion along the high-
symmetry lines L-�-X is displayed in Fig. 8. For comparison
the experimental dispersion is also shown. The LSDA and
LSDA+U yield qualitatively similar results, with an optical
mode not only in the �1 0 0� but also in the �1 1 1� direction.
The acoustic branch is well described within LSDA and
LSDA+U, but the optical branch is too high in energy. This
discrepancy between theory and experiment can be traced
back to the overestimation of the exchange splitting in the
LSDA.33 Indeed, when we reduce the exchange splitting by
one-half as in Ref. 33, we obtain reasonable agreement with
the experiments. The corresponding dispersion, shown in
Fig. 8�c�, is similar to that of Karlsson and Aryasetiawan.33

In Fig. 9 we show the imaginary part of the magnetic
response function R for selected wave vectors along the
�1 0 0� and �1 1 1� directions. The peak amplitudes are again
scaled to the same height for presentational purposes. The
obtained spin-wave spectra along �1 0 0� are in very good
agreement with previous calculations.31,33 In particular, a
double-peak structure starts to develop from q= �0.15,0 ,0�.
For larger wave vectors the two peaks overlap, resulting in a
rather broad single feature, which can be decomposed into
two Lorentzian peaks as shown in Fig. 10 for q
= �0.25,0 ,0�. As the wave vector increases, the intensity of
the lower peak decreases in agreement with experiments.86

In the �1 1 1� direction the double peak is not so clear within

the LSDA. Nevertheless, the calculated structure can still be
decomposed into two Lorentzians �results not shown�, but
the q interval where the double-peak structure appears is
small compared to the �1 0 0� direction.

Our calculations show that the exchange splitting has a
strong influence on the emergence of a double-peak struc-
ture. To demonstrate this we consider two q points in the
�1 0 0� direction where such features appear and calculate the
LSDA spin-wave spectra by reducing the exchange splitting
gradually by 0.1 eV in each step, up to one-half of its origi-
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nal value. The results are presented in Fig. 11. Even a very
small reduction in the exchange splitting by 0.1 eV strongly
suppresses the double-peak feature. As the exchange splitting
reduces further, the width of the peaks becomes narrower,
indicating an increased spin-wave lifetime. When the ex-
change splitting is reduced by one-half and corresponds to
the experimental value, the optical branch completely disap-
pears in the �1 1 1� direction, while it is shifted to larger
wave vectors in the �1 0 0� direction. The situation is very
similar within LSDA+U with a reduced exchange splitting.
Karlsson and Aryasetiawan found a weak double-peak struc-
ture with a reduced exchange splitting for q
=0.1875�1,1 ,1� when they used a small Gaussian broaden-
ing parameter in the Brillouin-zone integration,33 but this
double-peak structure becomes smeared out if a larger broad-
ening is used. Based on the symmetry properties of fcc Ni,
the spin-wave dispersion should be isotropic, i.e., one ex-
pects an optical branch also in the �1 1 1� direction, but the
resolution of the presently available experimental data is not
sufficient to observe it.86 Of course, a reduction in the ex-
change splitting in the calculations does not solve all prob-
lems for Ni. In particular, too large bandwidths and the in-
correct isotropic exchange splitting remain important issues
whose effect on the spin-wave spectra requires further inves-
tigations.

As pointed out by Cooke et al.,24 the double-peak struc-
ture in the magnetic excitation spectra of 3d ferromagnets
stems from the k-dependent exchange splitting and interband
transitions. A detailed analysis was given by Karlsson and
Aryasetiawan,33 who showed that the double-peak structure
in fcc Ni is implicitly contained in the kernel K, i.e., it is a
band-structure effect arising from the fact that W Im K pos-
sesses additional structure below the Stoner peak, which, in
turn, gives rise to a weak dip structure in �1−W Re K� via
the Hilbert transformation. Such a weak dip structure appears
as a second peak in the spin-wave excitation spectrum for
particular wave vectors. This observation is indirectly con-
firmed by our analysis. The application of a Hubbard U in
the LSDA+U calculation shifts majority-spin and minority-

spin states more or less rigidly, and the optical branch ap-
pears in the LSDA and LSDA+U around the same wave
vector q along �1 0 0�, while a reduction in the exchange
splitting leads to an appearance of the optical branch at
higher q values.

The magnetic response function R allows to extract infor-
mation about the spin-wave lifetimes, which are inversely
proportional to the widths of the spin-wave peaks. If Ni were
a strong ferromagnet, one would get well-defined � peaks up
to about 0.3 eV in the spin-wave spectra, corresponding to
the energy difference between the highest occupied majority-
spin 3d band and the Fermi level, i.e., the Stoner gap. How-
ever, Ni is not a truly strong ferromagnet due to the sp-d
hybridized majority states around the Fermi energy, and
Stoner excitations thus occur essentially at all energies. This
means that spin waves decay into Stoner excitations for all
nonzero wave vectors, which is reflected by a finite width of
the spin-wave peaks as shown in Fig. 9. The lifetime of the
spin waves depends on the details of the coupling between
these excitations and on the density of states of the Stoner
excitations. It should be noted that in itinerant ferromagnets
the lifetime of the spin waves becomes infinite in the limit of
a vanishing wave vector, provided that spin-orbit coupling is
ignored. As seen in Fig. 9, for small wave vectors the spin-
wave peaks are indeed narrow, and the damping is hence
weak, i.e., the lifetimes are long. As the wave vector in-
creases, the spin-wave dispersion enters into the region with
a high density of states of Stoner excitations, and the decay
mechanism becomes more efficient. In both crystallographic
directions considered here the maximum damping occurs in
the region where the double-peak structure appears. In con-
trast to the findings of Cooke et al.,24 the spin-wave peaks
associated with the optical branch are narrower than the
acoustic ones in our work, and the peak widths stay almost
constant throughout the Brillouin zone, while the peak
widths in the acoustic branch increase with the wave vector.
This might, in fact, explain why the acoustic branch disap-
pears in the middle of the Brillouin zone in the neutron-
scattering experiments.86

Finally, we focus on the spin-wave stiffness constant D. In
ferromagnets the spin waves show a quadratic dispersion law
��q�=Dq2 for small wave vectors. The values for Ni ob-
tained with different methods are listed in Table V. Our
LSDA estimate of 740 meV Å2 is substantially larger than
the experimental value 550 meV Å2. With the reduced ex-
change splitting D increases even further to 870 meV Å2,
whereas LSDA+U provides a much better estimate of
540 meV Å2, which reflects the importance of static corre-
lation effects in Ni. We note that our LSDA estimate for the
spin-wave stiffness of fcc Ni is in good agreement with cal-
culations based on constrained DFT in the adiabatic approxi-
mation. Using the frozen-magnon technique Rosengaard and
Johansson18 found D=739 meV Å2, which is very similar to
the values obtained by van Schilfgaarde and Antropov20

�740 meV Å2� and by Pajda et al.22 �756�29 meV Å2�,
who employed real-space methods. As the adiabatic approxi-
mation becomes exact in the limit of long wavelengths
�q→0�,93 this can be compared with values obtained from
more rigorous approaches based on the dynamical transverse
spin susceptibility or magnetic response function. However,
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within constrained DFT the second branch in the spin-wave
dispersion of Ni cannot be described.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a computational
method to study excitation spectra of magnetic materials
from first principles. The method is based on many-body
perturbation theory. The main quantity of interest is the
transverse magnetic response function, which treats both col-
lective spin-wave excitations and single-particle spin-flip
Stoner excitations on an equal footing. In order to describe
the former we include appropriate vertex corrections in the
form of a multiple-scattering T matrix, which describes the
coupling of electrons and holes with different spins. To re-
duce the numerical cost for the calculation of the four-point
T matrix we exploit a transformation to maximally localized
Wannier functions that takes advantage of the short spatial
range of electronic correlation in the partially filled d or f
orbitals of magnetic materials. Our implementation is based
on the FLAPW method.

The developed scheme was employed to calculate the ma-
trix elements of the Coulomb potential for the series of 3d
transition metals in the MLWF basis. Special attention was
given to the ferromagnets Fe, Co, and Ni. We showed that
the matrix elements of the screened Coulomb potential are
rather different for the NM and FM states and that the dif-
ference increases with the exchange splitting in the Ni-Co-Fe
sequence, which can be accounted for on the basis of the
total density of states around the Fermi level for the corre-
sponding systems.

The magnetic excitations in fcc Ni were studied in detail
based on the LSDA and LSDA+U methods. Both schemes

give qualitatively similar results for the spin-wave spectra
and dispersion. However, correlation effects seem to be im-
portant for the spin-wave stiffness constant, which is overes-
timated within LSDA. Our calculations indicate the exis-
tence of an optical branch in the spin-wave dispersion of Ni
along the �1 1 1� in addition to that along the �1 0 0� direc-
tion in the Brillouin zone. Although the acoustic branch is
well described within LSDA and LSDA+U, the optical
branch appears to be too high in energy. This discrepancy
between theory and experiment can be attributed to the over-
estimation of the exchange splitting or, in other words, to the
use of the Kohn-Sham Green’s function in the calculation of
the kernel K instead of the renormalized one.

In the LSDA Kohn-Sham Green’s function the long- and
short-range correlation effects are not taken into account
properly. The former can be treated within the GW approxi-
mation, while the latter require the summation of spin-
dependent T-matrix contributions. In the future we plan to
incorporate electron-electron �hole-hole� and electron-
magnon scattering processes into the electronic self-energy
by means of the T-matrix formalism, which improves the
theoretical description of the quasiparticle band structure. In
particular, it is expected to yield the correct exchange split-
ting in magnetic materials.
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