2,634 research outputs found

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    Optical Response of Sr2_2RuO4_4 Reveals Universal Fermi-liquid Scaling and Quasiparticles Beyond Landau Theory

    Full text link
    We report optical measurements demonstrating that the low-energy relaxation rate (1/τ1/\tau) of the conduction electrons in Sr2_2RuO4_4 obeys scaling relations for its frequency (ω\omega) and temperature (TT) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, 1/\tau\propto (\hbar\omega)^2 + (p\pi\kB T)^2 with p=2p=2, and ω/T\omega/T scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling, and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing "resilient" quasiparticle excitations above the Fermi energy

    A New Limit on Signals of Lorentz Violation in Electrodynamics

    Get PDF
    We describe the results of an experiment to test for spacetime anisotropy terms that might exist from Lorentz violations. The apparatus consists of a pair of cylindrical superconducting cavity-stabilized oscillators operating in the TM_{010} mode with one axis east-west and the other vertical. Spatial anisotropy is detected by monitoring the beat frequency at the sidereal rate and its first harmonic. We see no anisotropy to a part in 10^{13}. This puts a comparable bound on four linear combinations of parameters in the general Standard Model extension, and a weaker bound of <4 x 10^{-9} on three others.Comment: 4 pages, 3 figures, 2 table

    Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    No full text
    The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential (AP) at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.Mark D. McDonnell’s contribution was supported by an Australian Research Fellowship from the Australian Research Council (project number DP1093425)

    Hybridization gap and anisotropic far-infrared optical conductivity of URu2Si2

    Full text link
    We performed far-infrared optical spectroscopy measurements on the heavy fermion compound URu 2 Si 2 as a function of temperature. The light's electric-field was applied along the a-axis or the c-axis of the tetragonal structure. We show that in addition to a pronounced anisotropy, the optical conductivity exhibits for both axis a partial suppression of spectral weight around 12 meV and below 30 K. We attribute these observations to a change in the bandstructure below 30 K. However, since these changes have no noticeable impact on the entropy nor on the DC transport properties, we suggest that this is a crossover phenomenon rather than a thermodynamic phase transition.Comment: To be published in Physical Review

    Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap

    Full text link
    We study Na2IrO3 by ARPES, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g manifold highlights the importance of structural distortions and spin-orbit coupling (SO) in driving the system closer to a Mott transition. We detect an insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    Get PDF
    The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential (AP) at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms

    Pion-nucleus optical potential valid up to the DELTA-resonance region

    Get PDF
    We present in this article an optical potential for the π\pi-nucleus interaction that can be used in various studies involving π\pi-nucleus channels. Based on earlier treatments of the low energy π\pi-nucleus optical potential, we have derived a potential expression applicable from threshold up to the Δ\Delta-resonance region. We extracted the impulse approximation form for this potential from the πN\pi-N scattering amplitude and then added to it kinematical and physical corrections. The kinematic corrections arise from transforming the impulse approximation expression from the πN\pi-N center of mass frame to the π\pi-nucleus center of mass frame, while the physical corrections arise mostly from the many-body nature of the π\pi-nucleus interaction. By taking advantage of the experimental progress in our knowledge of the πN\pi-N process, we have updated earlier treatments with parameters calculated from state-of-the-art experimental measurements.Comment: 23 pages, 12 figures. Accepted for publication in Physical Review
    corecore