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The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential
(AP) at cortical synapses is known to be a stochastic process, as is the availability of
vesicles for release. These processes are known to also depend on the recent history
of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle
release. Mathematical models of such synaptic dynamics frequently are based only on the
mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are
sufficiently many vesicle sites, then variance is small. However, it has been shown recently
that variance across sites can be significant for neuron and network dynamics, and this
suggests the potential importance of studying short-term plasticity using simulations that
do generate trial-to-trial variability. Therefore, in this paper we study several well-known
conceptual models for stochastic availability and release. We state explicitly the random
variables that these models describe and propose efficient algorithms for accurately
implementing stochastic simulations of these random variables in software or hardware.
Our results are complemented by mathematical analysis and statement of pseudo-code
algorithms.
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1. INTRODUCTION
The release of vesicles following arrival of a pre-synaptic action
potential (AP) at a synapse is inherently probabilistic (Vere-Jones,
1966; Melkonian and Kostopoulos, 1996; Branco and Staras,
2009). The amount of neurotransmitter released by each AP can
also vary stochastically over time, in a manner dependent on the
timing of previously arriving APs (Dobrunz and Stevens, 1997).
These effects result in what is called short-term synaptic plastic-
ity (Zucker and Regehr, 2002; Klug et al., 2012; Regehr, 2012). It
has been suggested that the short term dynamics such plasticity
introduces may play an important role in information processing
in the cortex (Abbott and Regehr, 2004; Branco and Staras, 2009).
This has been demonstrated in studies of the influence of short-
term plasticity on: gain control (Abbott et al., 1997); coding and
detection mechanisms (Tsodyks and Markram, 1997; Maass and
Zador, 1999); filtering effects (Matveev and Wang, 2000a; Merkel
and Lindner, 2010; Rosenbaum et al., 2012); redundancy reduc-
tion (Goldman et al., 2002); information transmission (Goldman,
2004); membrane potential estimation (Pfister et al., 2010);
attractor networks (Fung et al., 2012); and correlations in neural
activity (Rosenbaum et al., 2013).

Popular mathematical models of short term synaptic plas-
ticity effects, such as depression and facilitation, typically are
expressed in term of differential equations that describe how the
mean number of available and/or released vesicles changes with
time in response to pre-synaptic spiking (Tsodyks and Markram,
1997; Tsodyks et al., 1998). The mean is an ensemble-average

over multiple repeats of the same pre-synaptic spike train, and
is often the focus of study because if the number of vesicles in the
model is large, the variance across trials is small and assumed to
be negligible in its impact. The consequence of this assumption
is that simulations of this type of model of short term plasticity
provides deterministic outcomes, in the sense that they do not
produce varying outcomes if repeated trials with identical initial
conditions are simulated.

However, variability in the number of vesicles avail-
able/released has also been studied mathematically (Vere-Jones,
1966), as has the covariance in the response to consecutive pre-
synaptic APs (Quastel, 1997). Recently, it has been shown math-
ematically that explicit inclusion of the variance in models of
short-term plasticity leads to significant differences in terms of
frequency-dependent information transmission, in comparison
with models that study only the mean (Rosenbaum et al., 2012).
This mathematical finding that variance can be influential is
consistent with previous simulation results (discussed in follow-
ing paragraphs) that found that the mean-model underestimates
post-synaptic firing rate (de la Rocha and Parga, 2005).

As well as mathematical analysis, the conceptual models of
stochastic vesicle availability and release that these models are
based on can also be studied by implementing stochastic simula-
tions. We use the term “stochastic simulation” to mean a software
(or, potentially, hardware) implementation that explicitly gener-
ates random or pseudo-random numbers for the purposes of sim-
ulating outcomes of a model’s random variables (Gillesple, 1977).
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By doing this, repeated runs with identical initial conditions and
identical external input to the model results in randomly varying
outcomes, i.e., trial-to-trial variability. Such simulations have, for
example, been used to study ion-channel noise and its impact on
AP generation (Faisal and Laughlin, 2007).

Although the mean model described above has been used fre-
quently, results based on stochastic simulations of short term
plasticity models have also been described previously (Melkonian
and Kostopoulos, 1996; Quastel, 1997; Matveev and Wang,
2000b,a; Fuhrmann et al., 2002; de la Rocha and Parga, 2005;
Loebel et al., 2009; Rosenbaum et al., 2012, 2013; Scott et al., 2012;
Reich and Rosenbaum, 2013) and comparisons between simula-
tions of the deterministic and stochastic models have been shown
to give rise to different outcomes in neural activity (de la Rocha
and Parga, 2005; Rosenbaum et al., 2012; Scott et al., 2012).

In general, it may be important to implement stochastic simu-
lations for synaptic connections where only a very small number
of vesicles are available for release, which is often the case (Branco
and Staras, 2009). In this case the mean model might be very
inaccurate in scenarios where ensemble averaging across mul-
tiple repeated trials is not possible, such as in large network
simulations.

As noted above, previous work has published results from
stochastic simulations as a complement to mathematical analysis.
However, as far as we are aware, the implementation details have
not been discussed at a level of detail that will enable researchers
whose primary expertise and experience is not in implementing
stochastic simulations, or who have little mathematical training,
to introduce trial-to-trial variation in simulations.

The primary aim of this paper is, therefore, to articulate pre-
cisely how to efficiently implement stochastic simulations that
accurately reflect several of the most well-known conceptual
models of vesicle availability and release processes. In our discus-
sion, and associated pseudo-code algorithms, we assume that the
algorithms would be applied under conditions where the number
of vesicles available may be small, and that therefore stochas-
tic simulation of all random variables in the conceptual models
may be important. We also aim to present mathematical descrip-
tions of key random variables that must be simulated in stochastic
models, as well as relating these descriptions to existing equations
describing mean numbers of vesicles. A secondary aim is to show
how existing algorithms may be made more efficient and general.

As well as the usual models of release dependent depression
and facilitation, the content of this paper is equally applicable
to the case of release-independent depression and associated fre-
quency dependent recovery (Fuhrmann et al., 2004; Scott et al.,
2012; Mohan et al., 2013).

The paper is organized as follows. In section 2, we review con-
ceptual models that we will use in this paper and in section 3
we mathematically introduce notation to describe the random
variables implied by each conceptual model. Next, section 4 con-
tains descriptions of correct and incorrect implementations of
stochastic simulations of the conceptual models, and relates these
to the random variables we described. Section 5 describes exam-
ple simulation results, and shows that incorrect implementations
can significantly miscalculate the number of vesicles that should
be released in response to sequences of pre-synaptic AP arrivals.

Finally, the conclusions drawn from our paper are summarized in
section 6.

2. CONCEPTUAL MODELS OF SHORT TERM PLASTICITY
The first step in computational modeling is to state a con-
ceptual model; once stated, a primary goal of computational
modeling is to faithfully implement simulations of the con-
ceptual model (Carnevale and Hines, 2005). We therefore first
clearly articulate conceptual stochastic models in this section, and
discuss algorithms for faithfully implementing stochastic simula-
tions of them in the following sections. Other conceptual models
exist, but the ones we consider serve to illustrate important
principles that should be reflected in stochastic simulations.

2.1. AVAILABILITY OF A SINGLE VESICLE FOLLOWING RELASE
In this paper we consider two conceptual “release-site” mod-
els (Sterratt et al., 2011) for short term synaptic depression, due
to stochastic unavailability of a vesicle:

• Availability Model 1: In this model it is assumed that once a
specific vesicle is released, the time at which it is next available
for release is a random variable that depends only on the time
since it was released. This random variable is not affected by
subsequent pre-synaptic spikes.

• Availability Model 2: Like Availability Model 1, it is also
assumed that after the vesicle is released, the time that passes
before it is next available for release is a random variable.
However, now if a pre-synaptic spike arrives before the vesicle
becomes available, the time before the unavailable vesicle then
becomes available is recalculated in a manner dependent only
on the time of the latest pre-synaptic spike.

Note that these models treat a single vesicle as if it is a conserved
object that switches between two states. Of course in reality the
vesicle is not conserved, and a more accurate description is to say
that a vesicle release site that can contain at most a single vesicle
either (1) does contain a vesicle, or (2) does not contain one.

Below we show that Availability Model 1 and Availability
Model 2 are mathematically equivalent, given an assumption that
the random variable describing availability times is exponential.
This is a standard assumption, because it provides good fits to
experimental data, and therefore underpins models developed in
conjunction with experimental data on short term depression (for
example, Tsodyks and Markram, 1997). However, it is feasible
that better fits to data might discard the exponential assumption,
and in that case it would be necessary to consider how stochastic
simulations need to differ for each model. As we show below for
a non-exponential example (Figure 6), the two models provide
significantly different outcomes.

2.2. RELEASE OF A SINGLE VESICLE UPON ARRIVAL OF A
PRE-SYNAPTIC SPIKE

In this paper we consider two conceptual models for the stochastic
release of a single vesicle upon arrival of a pre-synaptic spike:

• Release Model 1: In this model it is assumed that if the single
vesicle is available, then it is released with a constant probability
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upon arrival of a pre-synaptic spike, and this probability does
not change over time.

• Release Model 2: In this model it is assumed that if
the single vesicle is available, then it is released upon
arrival of a pre-synaptic spike with a certain time-varying
probability.

Release Model 1 is a classical model of probabilistic release (Vere-
Jones, 1966). Release Model 2 is appropriate when a synapse is
known to exhibit facilitation. Usually, based on experimental evi-
dence (see, for example, Markram et al., 1998), the change in
release probability (given availability) over time is modeled as
increasing by a percentage of the current probability of non-
release, whenever a pre-synaptic spike arrives (usually indepen-
dently of whether a vesicle is available or released) and then
decaying exponentially over time to a constant rest probability,
for as long as no more pre-synaptic APs arrive (Tsodyks et al.,
1998).

Release Model 2 is also appropriate when a synapse is known
to exhibit a different form of short term depression to that
modeled by the lack of vesicle availability. In this type of depres-
sion, known as “release-independent depression,” the probability
of vesicle release (given its availability) is reduced by arriv-
ing pre-synaptic spikes independently of whether the vesicle is
released, due to different mechanisms from those that cause
facilitation (Fuhrmann et al., 2004). In some models, facili-
tation and release-independent depression are assumed to be
present simultaneously (Graham and Stricker, 2008; Scott et al.,
2012).

2.3. COMBINING AVAILABILITY AND RELEASE
A single vesicle obviously cannot be released if it is not available,
but it is assumed that an available vesicle remains available until
released. This is the key feature of the conceptual models we study
where both availability and release are modeled as stochastic.

2.4. AVAILABILITY AND RELEASE FOR A POOL OF N VESICLES
In this paper, when we consider a conceptual model where there is
a pool consisting of at most N vesicle release sites, each containing
at most a single vesicle, we use the typical assumption that the
release and availability of each single vesicle occurs independently
of that in the other vesicle release sites. Note that although this
model is typical, it may not always be accurate (Quastel, 1997).

2.5. MULTIPLE TRIALS OF AVAILABILITY AND RELEASE
In this paper, when we consider a conceptual model where there
are N repeated trials for the same sequence of pre-synaptic
APs, and a single vesicle in a single release site, we assume that
the availability or release of the vesicle is independent for each
trial.

Note that the outcome for a model where there are N such
repeated trials is equivalent mathematically to a conceptual model
where there is a pool of N vesicle release sites with at most a single
vesicle available, for a single trial of the sequence of APs.

Since an experimental protocol is more amenable to studying
repeated trials for a single release site and the same sequence of
APs, we will refer to the case of N trials rather than N release sites.

2.6. VESICLE RELEASE SITES CONTAINING MULTIPLE VESICLES
The content of this paper regarding stochastic simulations can
be extended to a scenario where multiple vesicles are available
in a release site, and also where multiple such sites are available,
potentially each with different numbers of vesicles. However, we
do not discuss this further, as the most important observations
are relevant to sites containing single vesicles. Further discussion
of evidence for multiple release sites can be found in Loebel et al.
(2009).

3. RANDOM VARIABLES IMPLIED BY STOCHASTIC
CONCEPTUAL MODELS

The purpose of this section is to explicitly describe all ran-
dom variables inherent in the conceptual models we study, since
correct stochastic simulations of the models relies on correct
simulation of outcomes from these random variables.

3.1. AVAILABILITY MODELS
There is a specific random variable that exists in both conceptual
availability models: the time taken for vesicle to become available
following a successful release at time t = ts. We label this random
variable as Ta1 for Availability Model 1, and as Ta2 Availability
Model 2.

3.1.1. Availability model 1
In standard existing models, the random variable describing
the time until a release site contains an available vesicle, fol-
lowing release of its vesicle, is exponentially distributed with
a known mean, τa. In this section we generalize to arbitrary
positive and continuously valued distributions for the availabil-
ity time. We write the probability density function describing
the random variable Ta1 as fTa1 (Ta1 = x), and its cumulative
distribution function [describing Prob(Ta1 ≤ y)] as FTa1(y). We
introduce Pa,1(t|ts) to describe the probability of availability at
time t, given that the most recent successful release was at time ts.
We can write

Pa,1(t|ts) = FTa1(t − ts), t ≥ ts. (1)

Below, we note how this probability describes a distribution of
the potential times, immediately following a successful release at
t = ts, at which the released vesicle will next become available.
However, it is crucial to note that for a stochastic simulation
to be faithful to Availability Model 1, the released vesicle must
always be in one of two states (available or not available) and that
once it switches from not-available to available, it must stay avail-
able, until released again. Ignoring this fact can lead to incorrect
implementations of the conceptual model.

We now derive an expression for a conditional probability that
is potentially useful in some stochastic simulation implementa-
tions. Suppose a vesicle was released at the i–th AP. We introduce
notation for the time interval between APs, i and j as θi,j = tAP,j −
tAP,i > 0, where j may be any AP after the i–th one. The probabil-
ity that the vesicle becomes available by the j-th AP is Prob(Ta1 ≤
θi,j) = FTa1(θi,j), j = i + 1, i + 2, . . . . However, we also are inter-
ested in Prob(Ta1 ≤ θi,j|Ta1 > θi,j−1) j = i + 2, i + 3, . . . , which
is the probability that the vesicle does not become available before
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the j − 1–th AP, but does becomes available before the j–th AP. By
Bayes’ rule, this probability can be written as

Prob(Ta1 ≤ θi,j|Ta1 > θi,j − 1) = Prob(Ta1 ∈ [θi,j − 1, θi,j])
Prob(Ta1 > θi,j − 1)

= FTa1(θi,j) − FTa1(θi,j − 1)

1 − FTa1(θi,j − 1)
(2)

Special Case: For the case where FTa1(y) = 1 − exp (−y/τa),
i.e., Ta1 is exponentially distributed with mean equal to τa, it
is simple to derive Prob(Ta1 ≤ θi,j|Ta1 > θi,j−1) = FTa1 (tAP,j −
tAP,j−1). So, in this special case, the probability of a vesicle becom-
ing available after the j–th spike, given it wasn’t available at the
time of the j − 1–th spike, is independent of the time at which
the vesicle actually became unavailable in the first place. This
observation is actually a well known property of Poisson point
processes: events in every increment of time are independent of
the past history of the process. These processes have exponen-
tially distributed inter-event distributions, as we assumed in this
discussion.

3.1.2. Availability model 2
A direct translation of this conceptual model implies that a ran-
dom variable must be evaluated for every pre-synaptic AP that
arrives while a vesicle remains unavailable. We write the time
of the k–th pre-synaptic AP after the most recent release as
tAP,k, where k = 0, 1, 2, . . . , K, tAP,0 = ts is the time at which
the vesicle was previously released, and K is the number of AP
arrivals before the vesicle actually becomes available. We write the
random variable evaluated at the k–th AP as Ta2,k.

Under Availability Model 2, we can write that if the vesicle
did not become available by the k–th AP, then the conditional
probability that a vesicle is available by time t is

Pa,2(t|t > tAP,k) = Prob(tAP,k + Ta2,k ≤ t)

= FTa2(t − tAP,k), t ∈ (tAP,k, tAP,k+1], (3)

where it is assumed that each Ta2,k is drawn independently
from the same distribution with cumulative distribution function
FTa2(y).

For this model, the probability of availability by time t, given
only the most recent release time, ts is given by

Pa,2(t|ts) = 1 − (1 − FTa2(t − tAP,K ))

K−1∏

k = 0

×

(1 − FTa2(tAP,k + 1 − tAP,k)), (4)

which clearly in general is different from Pa,1(t|ts) for Availability
Model 1.

This direct translation of the conceptual model to obtain
Pa,2(t|t > tAP,k) suggests a stochastic simulation implementation
where a new random number is drawn for an unavailable vesicle,
upon every AP arrival. However, if we can derive the cumulative
distribution function of the total time to availability under this

release model, Ta2, a stochastic simulation that only draws a sin-
gle random number upon every vesicle release is feasible. Such
a random variable would have to produce Pa,2(t|ts) according
to the above expression, and in general such a random variable
is not readily obtainable. The following describes a special case
where it is.
Special case: For an exponential distribution of Ta we can easily
derive from Equation (4) that

Pa,2(t|ts) = 1 − exp (−(t − ts)/τa), t ≥ ts. (5)

Consequently, by inspection of Equation (1), Availability Model
1 is equivalent to Availability Model 2, for exponential avail-
ability times. This equivalence can also be seen by considering
Equation (2).

There are, of course, other possible models for the distribution
of the release time, such as a Rayleigh or lognormal model, and
it is feasible that such models may be a better fit to data than the
assumed exponential model. For example, more complex models
exist that describe the biophysics of vesicle generation, and how
release probability depends on calcium concentration (Meddis,
1986; Sumner et al., 2002; McDonnell et al., 2008). Discussing
the accuracy of simplifying such models to the phenomeno-
logical model used here is beyond the scope of this paper. In
general, however, any non-exponentially distributed Ta will not
lead to equivalence between Availability Model 1 and Availability
Model 2.

3.2. RELEASE MODELS
There is a specific random variable that exists in both conceptual
release models: the event that a vesicle is released, or not released,
upon arrival of the i–th pre-synaptic AP at time t = tAP,i. We label
this random variable as R(tAP,i). This random variable is binary, it
exists only at each AP time, it depends on the last time at which a
vesicle was released, ts, and we denote its outcomes as α if a vesicle
is released and as β if it is not. We denote the probability that the
event α occurs at time t, given the vesicle is available, as Pr|a(t).
The random variable has a probability mass function, and this is
given for Availability Model 1 by

Prob(R(tAP,i) = α|ts) = Pr|a(tAP,i)FTa(tAP,i − ts);
Prob(R(tAP,i) = β|ts) = 1 − Pr|a(tAP,i)FTa(tAP,i − ts), (6)

where tAP,i > ts, and for Availability Model 2 by

Prob(R(tAP,i) = α|ts) = Pr|a(tAP,i)Pa,2(tAP,i|ts);
Prob(R(tAP,i) = β|ts) = 1 − Pr|a(tAP,i)Pa,2(tAP,i|ts). (7)

Note that in Release Model 1, Pr|a has no time dependence
[i.e., Pr|a(tAP,i) = Pr|a], but this is the only difference in com-
parison with Release Model 2 (see Equation 1). Consequently,
provided the release probability has been calculated correctly at
each point in time during a simulation, there are no other differ-
ences in a stochastic simulation implementation in comparison
with Release Model 2.
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3.3. COMBINING AVAILABILITY AND RELEASE
A relevant binary-valued stochastic process can be stated based
on the random variables described above, namely, the process
describing whether a vesicle is available at any point in time. A
succinct description of this process is given in Loebel et al. (2009,
Equation 4), where it is expressed in terms of a differential equa-
tion. Following the notation used in that description, we label
the stochastic process as σ(t), and let σ(t) = 1 when the vesicle is
available and let σ(t) = 0 otherwise. The process is fully described
by the following equation:

dσ(t)

dt
= −σ(t−)R(t)δ(t − tAP,i)

+ (1 − σ(t−))δ(t − tAP,i − Ta), (8)

where the notation − in t− is used as shorthand to represent t− =
t − ε, where ε is a very short time period; thus when t = tAP,i

then t− is the time instant immediately prior to AP i arriving. We
have assigned α = 1 and β = 0 as the possible values of the ran-
dom variable R(t). During intervals of time for which σ(t) = 0,
the right hand side of Equation (8) is just δ(t − tAP,i − Ta), and
mathematically, the remaining terms in Equation (8) describe the
fact that σ(t) can jump from 0 to 1 only at the time t = tAP,i + Ta.
Similarly, Equation (8) is such that σ(t) can jump from 1 to
0 only when both R(t) = α = 1 and t = tAP,i, or equivalently,
R(tAP,i) = 1, which means a vesicle is released when AP i arrives.

Note that in Loebel et al. (2009), the event where σ(t) jumps
from 0 to 1 is stated to be modeled as a Poisson process. A Poisson
process has exponentially distributed times between events, and
therefore the conceptual model in Loebel et al. (2009) is in this
sense the same as our Availability Model 1 with exponentially
distributed Ta1, with mean τa. However, for an actual Poisson
process, events will continue to occur for all time, not just when
vesicles are currently unavailable, which is at odds with our stated
conceptual model. Nevertheless, it can be inferred that in Loebel
et al. (2009) that Poisson events are ignored when σ(t) = 1.

Does this mean that the distribution of times until a vesicle
becomes available is different in each conceptual model, since in
the Poisson process, the exponential time to arrival begins at the
time of the previous Poisson event, whereas in Availability Model
1 begins at the most recent release time? The answer is no, due to
the independence of events in Poisson processes (the same reason
that Availability Models 1 and 2 are equivalent for exponentially
distributed availability times). Therefore, there will be no differ-
ence when a stochastic simulation implementation of the Loebel
et al. (2009) conceptual model is carried out, compared with an
implementation of our Availability Model 1 with exponentially
distributed arrival times. However, if the arrival times are not
exponential, and the corresponding non-Poisson process replaces
the Poisson process in the Loebel et al. (2009) conceptual model,
the results will not be the same.

3.4. DETERMINISTIC MEAN MODELS FOR AVAILABILITY MODELS 1
AND 2

Differential equation notation is often used to express how the
mean fraction of available vesicles, Na(t), changes over time
in two ways: either upon a spike arrival, or between spike
arrivals (Tsodyks and Markram, 1997; Fuhrmann et al., 2002;

Scott et al., 2012). The typical form of such expressions is

dNa(t)

dt
= 1 − Na(t)

τa
− Nr|aNa(t−)

K∑

i = 1

δ(t − tAP,i),

where tAP,i is the arrival time of the i–th AP, out of a total of K,
and Nr|a is the mean fraction of available vesicles released by the
i–th AP. This differential equation can be easily solved in closed
form (e.g., Tsodyks and Markram, 1997) to get

Na(t) = 1, t < tAP,1,

Na(tAP,i) = (1 − Nr|a)Na(t−AP,i), t = tAP,i,

Na(t) = 1 − (1 − Na(tAP,i)) t ∈ [tAP,i, tAP,i + 1), (9)

exp
(−(t − tAP,i)/τa

)

where i = 1, . . . , K.
Note that the change over time in the fraction of trials in which

the vesicle is available clearly has a dependence on both (1) the
time since the most recent pre-synaptic AP and (2) on the fraction
of vesicles available at the time of the most-recent pre-synaptic
AP. Consequently, the deterministic mean model should be inter-
preted as explicitly solving for the conditional mean number of
vesicles released at each AP arrival, given the number that are
available for release.

Remark 1: It is clear that the mean model accurately reflects
Availability Model 2 generally, and in the specific case stated
above, assumes exponential availability times following each AP
arrival. Moreover, we have discussed that Availability Models 1
and 2 are equivalent for exponentially distributed availability
times, and hence the stated mean model also accurately reflects
Availability Model 1 for this specific case.

Remark 2: The deterministic mean model does not, however,
accurately reflect Availability Model 1 for non-exponentially dis-
tributed availability times, since under Availability Model 1, the
fraction of trials in which a vesicle should be released, given
that it is available, should be based on the trial-dependent time
since a vesicle was released, not solely on the time since the most
recent AP. Therefore, the right hand side of a differential equation
describing the mean number of trials in which a vesicle is avail-
able should have an additional term for each AP that occurs prior
to the current AP. Moreover, if each additional term describes the
mean number of trials in which vesicles have not become available
since the i–th AP, the results will potentially become increasingly
inaccurate with the time elapsed since the i–th AP.

One possibly useful element in any extension of mathemat-
ical analysis to this case of multiple trials might be an iterative
expression articulated in a different context by McDonnell et al.
(2002, 2008), that can be adapted to describe the conditional
probability that u vesicles are available across Z trials, even if the
time they were released differs. This approach does not suggest
a straightforward method for implementing a stochastic simula-
tion, but as described by McDonnell et al. (2002, 2008), there are
simple expressions for the conditional mean and variance, and
these could potentially be used within a deterministic equation
that describes how the mean number of trials in which a vesicle is
available changes with time.
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In section 5, we compare the results of stochastic simulations
with results for the mean obtained from Equation (9). We also use
a result for a scenario where pre-synaptic APs arrive at the synapse
periodically with frequency f Hz so that the AP times are tAP,i =
i/f , i = 1, 2, . . .. In this case, it is well known that the mean
fraction of vesicles available quickly decays to a constant steady
state value, N−

ss := Na(t−AP,i+1) = Na(t−AP,i). As shown in (Abbott
et al., 1997; Matveev and Wang, 2000b), this can be obtained from
Equation (9) (which hold for Availability Model 2 generally, and
for Availability Model 1 with exponentially distributed availabil-
ity times) to get the mean fraction of vesicles available for release
just prior to a pre-synaptic spike as

N−
ss = (1 − exp

(−1/(f τa)
)
)

1 − exp
(−1/(f τa)

)
(1 − Nr|a)

. (10)

4. CORRECT AND INCORRECT STOCHASTIC SIMULATIONS,
IN RESPONSE TO PRE-SYNAPTIC SPIKE TRAINS

We consider how a synaptic vesicle release site, containing at most
a single vesicle, responds over time (t ≥ 0), to a sequence of K
arriving pre-synaptic APs. A stochastic simulation implementa-
tion that is faithful to the conceptual models is one that accurately
produces vesicle releases that reflect the probabilities stated in
Equation (6) or in (7).

In order to carry this out, it is necessary at every time step of
the simulation to have a determined state of the availability of the
vesicle. In other words, the vesicle is either available or not avail-
able. It switches from available to not available in the event that
it is released, and it switches from not-available to available once,
and only once, in the time following its last release. Therefore,
once the vesicle becomes available according to the stochastic sim-
ulation, after a time T since the previous release, the probability
of availability that must be used within the simulation is given by

Pa,f(t|ts) = 1, t ≥ T

0, t < T. (11)

This holds for both Availability Model 1 and Availability Model 2.
There are a number of parameter values that are required to be

set in order to simulate a stochastic synapse model, as introduced
above. These are summarized in Table 1.

In implementations of stochastic simulations it is neces-
sary to generate random numbers from particular probability
distributions. If a uniform random number generator is available,
then its output, U ∈ (0, 1), represents a number drawn from

Table 1 | List of parameter notation for single-vesicle release models.

Parameter name Notation

Time-dependent probability of release,

given vesicle is available Pr|a(t)
Mean time to restore a released vesicle τa

Simulation duration T

Number of pre-synaptic spikes K

Time of arrival of each pre-synaptic

action potential (AP) tAP,i ∈ [0, T ], i = 1, 2, . . . , K

a continuous probability distribution. Random numbers from
many other distributions can be generated from uniform ran-
dom numbers. For example, exponentially distributed random
numbers can be obtained by the operation Ta = −τa ln (U).

In the pseudo-code below, we assume exponentially dis-
tributed availability times as our example, but if other distribu-
tions for this random variable are desirable, then the only change
required is to generate random numbers from that distribution
instead.

4.1. SINGLE VESICLE AVAILABILITY AND RELEASE: AVAILABILITY
MODEL 1

The following pseudo-code illustrates how simulations of the ran-
dom variables described above can be implemented in stochastic
simulations.

Correct Implementation 1, for AM1
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()

//Release the vesicle
Set: LastReleaseTime = t_i
//reset the next availability

time, for
//exponentially distributed

availability times
NextAvailabilityTime = LastReleaseTime
+exprand(tau)

end
end

end
//unifrand() generates a uniformly

distributed random number between
0 and 1

//exprand() generates an exponentially
distributed random number with mean tau

The pseudo-code variable LastReleaseTime represents our math-
ematical variable, ts. A direct translation of this pseudo-code
into the probability that the vesicle will be released upon the
arrival of AP i, given ts, obtains Pr|a(tAP,i)Prob(tAP,i > ts +
Ta). This can be expressed as Pr|a(tAP,i)Prob(Ta < tAP,i − ts) =
Pr|a(tAP,i)FTa(tAP,i − ts), and thus exactly matches Equation (6),
as required.

There are also several ways in which the conceptual model
has been, or could be, erroneously translated into a stochastic
simulation, and these are described in the following subsections.

4.1.1. First incorrect implementation of availability Model 1
It is stated in Scott et al. (2012) that “Following successful vesicle
release, [the availability probability] is set to zero and relaxes back
to 1 . . .” The exact form of this time changing probability [which
we introduced above as Pa(t|ts)] is expressed in Scott et al. (2012,
Equation 14) as the solution to a differential equation, which has
an exact solution equivalent to stating that

Pa(t|ts) = 1 − exp (−(t − ts)/τa), t > ts, (12)
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where ts was the last successful release time. Clearly Equation (12)
is equivalent to Equation (1). However, it is also stated in Scott
et al. (2012) that in order to create a stochastic model, “. . . we
allowed vesicle release following comparison of” Pa(t|ts)Pr|a(t)
“with a random number between 0 and 1.”

The following pseudo-code illustrates how this statement
would be correctly implemented:

Incorrect Implementation 1.1, for AM1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa*Pr_given_a(t_i) > unifrand()
//Release the vesicle
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probability that
the vesicle will be released upon the arrival of the first AP after
ts, at time tAP,j, given ts, obtains Pr|a(tAP,j)Pa(tAP,j|ts) which is
in agreement with the correct implementation. However, this
implementation also imposes a probability that the vesicle will be
released upon the arrival of the second AP after ts, at time tAP,j+1,
as (1 − Pr|a(tAP,j)Pa(tAP,j|ts)) × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which
is the product of the probabilities of non-release at the j–th AP,
and the calculated probability of release at the j + 1–th AP. This
is not in agreement with Equation (6). Similar holds for the case
where the vesicle is not released within the simulation after the
j + 2–th AP, the j + 3–th and so forth.

The reason that the implementation is incorrect is that it does
not take into account that the non-release at the j–th AP could
have been due to release failure for an available vesicle, and this
distorts the simulated probability of when the vesicle is released.

This fact might be more readily apparent by considering the
following different incorrect implementation that achieves equiv-
alent, but slightly less efficient, results:

Incorrect Implementation 1.2, for AM1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa > unifrand1()

if Pr_given_a(t_i) > unifrand2()
//Release the vesicle
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probabil-
ity that the vesicle will be released upon the arrival of the
first AP after ts, at time tAP,j is also in agreement with
the correct implementation. However, the probability that
the vesicle will be released upon the arrival of the second
AP after ts, at time tAP,j+1, translates as [(1 − Pa(tAP,j|ts)) +
Pa(tAP,j|ts)(1 − Pr|a(tAP,j))] × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which is
also not in agreement with Equation (6). Rearranging this gives
(1 − Pr|a(tAP,j)Pa(tAP,j|ts)) × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which is
identical to the result for the first stated incorrect pseudo-code.

Both cases of incorrect pseudo-code are incorrect because, as
is clear in the second version, a random number can be drawn
that is less than the probability of availability, which represents
the vesicle being available. But the code does not take into account
that once this happens once, there should never be a failure of
availability before the vesicle is released.

The pseudo-code is equivalent to a different conceptual model
where the vesicle’s availability is reset to zero upon every spike
arrival, regardless of whether the vesicle is released or not.
Following this reset, the time until availability remains dependent
on the time since the last release. This is unlike Availability Model
2, in which the reset causes the time until availability to become
dependent on the time since the last spike arrival instead, and only
for vesicles that are unavailable.

4.1.2. Second incorrect implementation of availability model 1
A second possible incorrect implementation could result from
attempting to address the problem above by implementing the
following incorrect pseudo-code:

Incorrect Implementation 2, for AM1
Set: IsVesicleAvailable = 1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if IsVesicleAvailable == 0

//vesicle is not available
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa > unifrand1()

//vesicle becomes available
IsVesicleAvailable = 1

end
end
if IsVesicleAvailable == 1

//vesicle is available
if Pr_given_a(t_i) > unifrand2()

//Release the vesicle
Set: IsVesicleAvailable = 0
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probability
that the vesicle will be released upon the arrival of the first
AP after ts, at time tAP,j is also in agreement with the cor-
rect implementation. However, the probability that the vesicle
will be released upon the arrival of the second AP after ts, at
time tAP,j+1, translates as Pr|a, if the vesicle was made avail-
able after the first spike, but not released, and as PaPr|a if it
became available after two spikes. When the probability of being
in each of these three states is taken into account, the over-
all probability that the vesicle will be released upon the arrival
of the second AP is Pr|a(tAP,j+1)[Pa(tAP,j)(1 − Pr|a(tAP,j)) + (1 −
Pa(tAP,j))Pa(tAP,j+1)].

As a concrete example of why this implementation is incorrect,
consider an example where immediately after a vesicle release, the
next arriving AP did not find a vesicle available. Suppose Pa = 0.4
at this time, and increases to Pa = 0.7 just before the next arriving
spike. We should have a vesicle available after the first spike in
40% of repeated trials, and a vesicle available in 70% of repeated
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trials after two spikes. However, in this implementation, when the
vesicle is not available after the first spike, we compare Pa = 0.7
with a random number, and 70% of the time for this case we then
say a vesicle will be available after two spikes. This is incorrect,
because we will have 40% of trials finding a vesicle on the first
spike arrival spike and therefore by comparing Pa with 0.7 we have
100 × (1 − 0.4) × 0.7 = 42% of trials finding a vesicle available
on the second spike arrival, but not the first. Thus, there are 40 +
42 = 82% of all trials finding a vesicle available after either the
first or second spike arrival. The latter value should, however, be
70%, not 82%, according to the conceptual model. Therefore, this
implementation causes too many vesicles to become available by
the time of the second spike arrival, if they were not available on
the first arrival. The correct number to compare with a random
variable upon the second spike arrival is 0.5, which would mean
30% of trials find a vesicle available on the second spike arrival,
but not the first.

4.1.3. Second correct implementation of availability model 1
Incorrect Implementation 2 can be corrected by changing the
calculation of Pa(t), based on Equation (2). For exponential avail-
ability times, the correction is a simple matter of replacing the
pseudo-code line

Set: Pa = 1-exp(-(t_i-LastReleaseTime)/
tau_r)

with

Set: Pa = 1-exp(-(t_i-t_(i-1))/tau_r)

For non-exponentially distributed arrival times, the required
change is more complex, but readily follows in a similar fashion,
from Equation (2).

4.1.4. Third correct implementation of availability model 1, for
exponential availability times

We stated above that for the special case of exponentially dis-
tributed times for a vesicle to become available, Availability
Model 1 is equivalent to a conceptual model where a vesicle
becomes available upon generation of the next event within a
Poisson process with rate 1/τa, following release, as in Loebel
et al. (2009). An implementation of this conceptual model is
illustrated in the following pseudo code, where it is assumed
that the Poisson events had previously been calculated, and that
NextPoissonTime(x) is a function that returns the time of
the Poisson event immediately following the time given by its
argument.

Correct Implementation 3, for AM1
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()
//Release the vesicle
Set: NextAvailabilityTime

= NextPoissonTime(t_i)
end

end
end

4.2. SINGLE VESICLE AVAILABILITY AND RELEASE: AVAILABILITY
MODEL 2

The following pseudo-code illustrates how simulations of
Availability Model 2 can be implemented in stochastic simu-
lations. Note that the only difference in comparison with the
pseudo-code for Availability Model 1 is that the time of next avail-
ability (for unavailable vesicles only) is dependent only on the last
spike arrival time, not the last release time, in order to match the
conceptual model.

Correct Implementation 1 for AM2
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()

//Release the vesicle and reset the
next availability time, for

// exponentially distributed
availability times

NextAvailabilityTime = t_i
+exprand(tau)

end
else

//vesicle is unavailable; reset the
next availability time, for

//exponentially distributed
availability times

NextAvailabilityTime = t_i +exprand(tau)
end

end

A direct translation of this pseudo-code into the probabil-
ity that the vesicle will be released upon the arrival of AP i,
given that it was not released by the time of AP i − 1, obtains
Pr|a(tAP,i)Prob(tAP,i > tAP,i−1 + Ta). This can be expressed as
Pr|a(tAP,i)Prob(Ta < tAP,i − tAP,i−1), and thus exactly matches
Equation (7), as required, upon substitution of Equation (5).

It is possible to incorrectly implement Availability Model 2 in
a manner directly analogous to that in the first incorrect imple-
mentation of Availability Model 1. However, an implementation
analogous to the second incorrect implementation of Availability
Model 1, will actually be correct for Availability Model 2, since
now the probability of availability is dependent only on the last
AP arrival time.

4.3. MULTIPLE TRIALS OF SINGLE VESICLE AVAILABILITY AND
RELEASE

4.3.1. Availability model 1 with exponential availability times
For the special case of exponentially distributed availability times,
for each trial in which a vesicle is unavailable at the previous AP,
the probability of becoming available by the current one will be
identical for each trial (provided the input APs occur at the same
times in all trials). As a direct consequence of this, the proba-
bility that w trials result in a vesicle becoming available, out of
v in which a vesicle was not available at time tAP,i, is given by
the binomial distribution, as mentioned and studied numerous
times, e.g., (Vere-Jones, 1966; Melkonian and Kostopoulos, 1996;
Quastel, 1997; Matveev and Wang, 2000b; Pfister et al., 2010;
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Reich and Rosenbaum, 2013). We introduce a random variable,
W , to describe the number of unavailable vesicles that become
available. We have

Prob(W = w|v) = (v
w

)
(1 − Pa)

(v − w) (Pa)
w .

That this expression holds enables a stochastic simulation imple-
mentation that is far more efficient than repeating each of Z trials
independently, as described in the following pseudo-code.

Set: NumUnavailable = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
//Calculate probability of availability

at t_i for any unavailable vesicles
Set: Pa = 1-exp(-(t_i-t_(i-1))/tau_r)
//calculate the number to become

available by t_i
Set: NumUnavailable = NumUnavailable

- binornd(NumUnavailable,Pa);
//calculate number to release at t_i
Set: NumUnavailable = NumUnAvailable

+ binornd(NumTrials-NumUnavailable,
Pr_given_a(t_i))

end
//binornd(v,w) calculates a binomially

distributed random number with
// a maximum value of v, and mean vw.

This algorithm is an extension of an algorithm presented
by Quastel (1997) (see also Pfister et al., 2010) for the case where
Pa is time-independent.

In the above pseudo-code, we have calculated two independent
binomially distributed random numbers for each pre-synaptic AP
arrival. The second random number describes the number of tri-
als in which an available vesicle is released. This is accurate with
respect to both Release Model 1 and Release Model 2 under the
assumptions of this paper, since the simulation calculated how
many trials have a vesicle available at each time tAP,i, and the
probability of release is independent and identical for all trials
in both release models. Mathematically, if we denote the random
variable describing the number of vesicles released as U , when s
are available, we have

Prob(U = u|s) = (s
u

)
(1 − Pr|a)(s − u)

(
Pr|a

)s
.

The use of binomially distributed random numbers in this way
will not be correct for a possible alternative release models where
the probability of release, given availability, depends on the his-
tory of vesicle release in each trial, because the refill events
are not independent in that case [see, e.g., Quastel (1997) for
mathematical analysis of this case].

4.3.2. Availability model 2 with exponential availability times
The binomial approach described above for the special expo-
nential case of Availability Model 1, will also correctly simulate
Availability Model 2 with exponential availability times, since, as
discussed above, the two models are equivalent under this special
case.

4.3.3. Availability models 1 and 2 with non-exponential availability
times

The algorithm above holds only for exponential availability
times, as it relies on the fact that in this case Pa,1(t|ts) = 1 −
exp (−(t − ts)/τa), t ≥ ts for all vesicles. For non-exponential
availability times, the number of vesicles unavailable due to
release from all previous spikes needs to be tracked, and conse-
quently many more binomial random numbers need to be gen-
erated following each AP. Moreover, Pa(t) needs to be calculated
using Equation (2).

4.4. COMPARISON OF ALGORITHM IMPLEMENTATION EFFICIENCIES
We have aimed in the pseudo-code implementations above to
describe computationally efficient algorithms that require as few
random numbers to be generated as possible.

We note that the implementation suggested, for example,
in Loebel et al. (2009) [see also Sterratt et al. (2011, p. 188)]
involves an accurate approximation of a true Poisson point pro-
cess, and this approximation is particularly relevant to any sim-
ulation in which time is discretised into uniform intervals of
Δt, such as in most simulations that involve numerical solu-
tion of differential equations. The well-known approximation
states that provided that Δt � τa, a Poisson point process event
occurs within any given time interval of duration Δt with
probability Δt

τa
.

A stochastic simulation based on this approximation requires
comparison of Δt

τa
with a uniform random number at every time

step of the simulation between times 0 and tK . It is possible to alter
the implementation so that the Poisson events are only calculated
during the simulation, rather than prior, where a comparison of
a uniform random number with Δt

τa
is carried out for every time

step following vesicle release, until a random number is generated
that is larger than Δt

τa
.

However, such implementations are potentially very ineffi-
cient, because many random numbers must usually be generated
for every unavailable vesicle, whereas only one random number
need be generated in, for example, Correct Implementation 1 for
AM1.

5. EXAMPLES: COMPARING STOCHASTIC SIMULATION
IMPLEMENTATIONS

5.1. ERRORS IN SIMULATING PROBABILITY OF RELEASE, AND MEAN
NUMBER OF RELEASES AFTER K SPIKE ARRIVALS, FOR
EXPONENTIAL AVAILABILITY TIMES

We consider a scenario where pre-synaptic APs arrive at a synapse
periodically with frequency f Hz. We consider Z repeated tri-
als following an initial condition where a vesicle is assumed to
have just been released, in all trials, at the start of our simula-
tions. We calculate the number of trials in which the next vesicle
release occurs after the first spike, the second spike and so forth.
We obtain results for f between 5 and 150 Hz, for Z = 100,000,
τa = 0.5 s and K = 50 pre-synaptic spikes (as a maximum; the
simulation stops when a vesicle is first released). Thus, the AP
times are tAP,i = i/f , i = 1, 2, . . . , 50.

We estimated the probability that the vesicle was next released
after i = 1, 2, . . . 20 APs following vesicle release at time t = 0,
by evaluating the fraction of trials in which the vesicle was first
released after the i–th spike. We then calculated the absolute value
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of the difference in the estimated probability for several correct
and incorrect implementations, and also the relative error, relative
to the correct version.

In order to clarify the significance of the values we obtained for
absolute and relative error, we also considered a simulation where
H = 100 spikes per trial periodically arrive with frequency f , and
for each implementation counted the total number of vesicles
released as a function of f . We then compared the mean num-
ber released after H spikes, calculated from Z = 10,000 repeats
of each implementation, as well as the maximum and minimum
numbers released.

Finally, in order to show that our simulations and mathemati-
cal analysis is correct for Availability Model 1 for both periodic
and non-periodic AP arrivals, we compare correct and incor-
rect implementations for each case with results predicted by the
Equations (9) and (10).

5.1.1. Results for availability models 1 and 2 with release model 1
We set the probability of release, given availability to Pr|a = 0.6.
Figure 1 shows the absolute error, and Figure 2 shows the rela-
tive error between the correct and incorrect implementations, for
Availability Model 1.

The absolute error, as predicted by the theory, is zero after the
first pre-synaptic spike, for all f . However, it is clear that the abso-
lute error can be as high as 10% for subsequent spikes, and is
highest for low frequencies. It is also clear that the relative error
can be very high for high frequencies. In these cases, the proba-
bility of release is relatively small for all subsequent spikes, and
hence the absolute error is low. Yet the relative error can be higher
than 500% at f = 150 Hz.

Figure 3 shows the absolute error between the correct and
incorrect implementation for Availability Model 2 (recall from
above that an implementation analogous to the second incorrect
implementation of Availability Model 1, is correct for Availability
Model 2). The incorrect implementation clearly shows a smaller
error than for Availability Model 1.

Results for the mean number of vesicles released after H = 100
spikes are shown in Figure 4. It is clear for Availability Model
1 that the mean number of vesicles released per trial of 100
spikes becomes more inaccurate for the incorrect models as f τr

increases. For example, at f τr > 10, the incorrect models can pro-
duce more than twice as many vesicles as the correct one. It is clear
for Availability Model 2 that the mean number of vesicles released
per trial of 100 spikes is inaccurate for the incorrect model,
similar to Availability Model 1. However, now the incorrect
model underestimates the number of vesicles released, whereas
for Availability Model 1, the incorrect models overestimated
this number.

The data in Figure 4 also shows that all models cor-
rectly produce a mean of Pr|a = 0.6 vesicles released at low
frequencies, where the availability always has time to recover to
close to 100%.

Figure 5 shows the fraction of 1000 trials in which vesi-
cles are released in response to a sequence of 20 periodically
arriving APs, with frequency 10 Hz, and to a sequence of 50
APs arriving at times corresponding to a Poisson point pro-
cess, with mean frequency 10 Hz. In this figure, the data for

A

B

FIGURE 1 | Absolute errors for incorrect implementation 1 (A) and

incorrect implementation 2 (B), for Availability Model 1, with

exponentially distributed availability times. The data was obtained by
empirically estimating the probability of release after i spikes, as a
function of the frequency of periodically arriving pre-synaptic action
potentials, by stochastically simulating Z = 100,000 trials for each
condition. The absolute error can be as high as 0.1, and higher errors
occur at low frequencies.

the Deterministic, and Steady state cases were obtained using
Equations (9) and (10), respectively (derived previously in the
literature, as stated and referenced above) and clearly match the
correct stochastic simulations.

5.1.2. Release model 2
In order to demonstrate how to incorporate a time dependent
release probability, we consider a standard model of facilitation
(see, e.g., Scott et al., 2012). The change in release probability can
be expressed as a differential equation, but it is clearer to write a
piecewise equation as follows:
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A

B

FIGURE 2 | Relative errors for incorrect implementation 1 (A) and

incorrect implementation 2 (B) for Availability Model 1, with

exponentially distributed availability times. The data was obtained by
empirically estimating the probability of release after i spikes, as a function
of the frequency of periodically arriving pre-synaptic action potentials, by
stochastically simulating Z = 100,000 trials for each condition. The largest
relative errors occur for higher frequencies.

Pr|a(t) = Q, t < tAP,1,

Pr|a(tAP,i) = Pr|a(t−AP,i) + S(1 − Pr|a(t−AP,i)), t = tAP,i,

Pr|a(t) = Q − (Q − Pr|a(tAP,i)) t ∈ [tAP,i, tAP,i + 1),

exp
(−(t − tAP,i)/τf

)

where Q is a parameter that describes the steady-state release
probability, when there have been no arriving APs for a long
time, and S is a parameter that describes the fractional increase
(relative to the maximum possible increase) in release probabil-
ity that occurs for every arriving pre-synaptic AP. We also have a

FIGURE 3 | Absolute error between correct and incorrect

implementation for Availability Model 2, with exponentially

distributed availability times. The data was obtained by empirically
estimating the probability of release after i spikes, as a function of the
frequency of periodically arriving pre-synaptic action potentials, by
stochastically simulating Z = 100,000 trials for each condition. The largest
error occurs for low frequencies, but is much smaller than for Availability
Model 1.

time constant of facilitation, τf, which determines how quickly the
release probability decays back to its resting value, Q. Examples of
appropriate parameters might be Q = 0.4, and S = 0.2, similar
to Scott et al. (2012).

Note that this particular function Pr|a(t) is determined entirely
once the sequence of pre-synaptic spikes is known, and conse-
quently it is easily incorporated into the stochastic simulation
algorithms described above, and we do not show example results
here.

The same observations hold for release-independent depres-
sion with frequency-dependent recovery, in which case τf can also
change with time (Fuhrmann et al., 2004; Scott et al., 2012).

5.2. COMPARISON OF AVAILABILITY MODELS 1 AND 2 FOR
NON-EXPONENTIAL AVAILABILITY TIMES

In order to demonstrate that a non-exponential availability model
provides different outcomes for Availability Models 1 and 2, we
consider the case of Rayleigh distributed availability times, with
mean τa = 0.5 s.

Figure 6 shows the fraction of 1000 trials in which vesicles are
released, for both availability models, in response to a sequence
of 20 periodically arriving APs, with frequency 10 Hz, and to a
sequence of 50 APs arriving at times corresponding to a Poisson
point process, with mean frequency 10 Hz.

The results shown in Figure 6 were obtained both by a direct
adaptation of the correct stated pseudo-code above to Rayleigh
distributed availability times, and also by direct adaption of the
binomial approaches described, for Availability Model 2. The
binomial results for Availability Model 1 required a more com-
plex algorithm, where the number of vesicles unavailable due to
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A

B

FIGURE 4 | Mean (solid traces) number of vesicles released in total

after 100 periodic pre-synaptic action potential arrivals for Availability

Model 1 (A) and Availability Model 2 (B). The minimum and maximum
number of vesicles released are shown with (dashed traces). For each
frequency f, all statistics are derived from 10,000 stochastic simulations.
Clearly the incorrect implementations can over or under estimate the
correct number of vesicles released.

release from all previous spikes needed to be tracked, and con-
sequently many more binomial random numbers generated than
for Availability Model 1. The data can be seen to match in either
implementation, but to be quite different for each Availability
Model.

6. CONCLUSIONS AND EXTENSIONS
6.1. CORRECT AND EFFICIENT STOCHASTIC SIMULATIONS OF

SHORT-TERM PLASTICITY
We have shown that various correct implementations of a stochas-
tic simulation of either Availability Model 1 or 2 are possible.

A

B

FIGURE 5 | Fraction of 1000 trials in which vesicles are released, for

each of a sequence of 20 periodic spikes (A), and 50 Poisson spikes (B),

and vesicles with exponentially distributed availability times. The
frequency in both cases is 10 Hz. The traces for Deterministic, and Steady

state were obtained using Equations (9) and (10). This data shows that the
incorrect implementations give markedly different outcomes to the correct
stochastic simulation implementations, and to the deterministic expression
for the mean number of trials in which vesicles are released.

However, it is also possible to incorrectly implement either model.
For Availability Model 1, two kinds of incorrect implementa-
tion result in more vesicle releases than should be the case. For
Availability Model 2, an incorrect implementation results in less
vesicle releases than should be the case.

We have also shown that some correct implementations are
more efficient than others. In particular, we first stated an
implementation that requires only a single random number to be
generated each time a vesicle is released. This is more efficient
than an implementation based on generation of a Poisson process
that determines availability times, and much more efficient than
generating a random number for every time step in a simulation.
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A

B

FIGURE 6 | Fraction of 1000 trials in which vesicles are released, for

each of a sequence of 20 periodic spikes (A), and 50 Poisson spikes (B),

and vesicles with Rayleigh distributed availability times. The frequency
in both cases is 10 Hz. This data shows that Availability Models 1 and 2
provide markedly different outcomes for Rayleigh distributed availability
times, unlike the identical outcomes for exponentially distributed times.
The data also shows that extension of the binomial approach matches the
data where each trial is individually simulated.

We also have shown that when multiple independent vesicle
releases are considered, the most efficient stochastic simulation
implementation can be achieved by generating binomial random
numbers.

6.2. CONSEQUENCES OF EQUIVALENCE OF AVAILABILITY MODELS
ONLY FOR EXPONENTIAL AVAILABILITY TIMES

We have discussed that the two availability conceptual mod-
els are equivalent when the availability times are exponen-
tially distributed, and this can be derived as a consequence
of a well known property of a homogeneous Poisson point
process. When the availability times are non-exponential, the
two availability conceptual models we consider are generally
non-equivalent.

As we have shown, these points are important in terms of their
consequences for the implementations that can be used to cor-
rectly simulate Availability Model 1. Another consequence is that
the popular differential equation approach to describing the mean
number of available vesicles could have analogous correct simple
forms for Availability Model 2, but not for Availability Model 1.

6.3. BINOMIAL-BASED STOCHASTIC SIMULATIONS FOR
NON-EXPONENTIAL AVAILABILITY TIMES

When Ta is not exponentially distributed, no simple adaptation of
the binomial approach will work for Availability Model 1, because
there is no simple procedure for calculating random numbers cor-
responding to the random variable W . However, it is possible to
keep track of how many vesicles were made unavailable by each
AP, and how many are restored by the time of each subsequent
AP, and perform a stochastic simulation that calculates as many
binomial random numbers as there have been prior APs for which
unavailable vesicles still exist. This procedure must make use of
Equation (2) to calculate the probability of availability by the time
of the next spike, using the time of the previous spike.

Such an algorithm may be more efficient than independently
simulating each trial, provided that APs arrive relatively slowly
compared with the mean time for a released vesicle to become
available. Figure 6 shows that an implementation of this approach
for Availability Model 1 and Rayleigh distributed available times
agrees with data from an approach that individually simulates
each trial.

For Availability Model 2, the binomial approach will work
for arbitrary FTa , since the probability of an unavailable vesicle
becoming available will be the same for all trials, as was the case
for the data in Figure 6. Moreover, only the cumulative distribu-
tion function of the availability times need be known to carry this
out, whereas Equation (2) needs to be computed for Availability
Model 2. Such an algorithm is a straightforward extension of an
algorithm described by Quastel (1997) for constant probabilities
for any released vesicle to be available by the next spike.

6.4. OTHER MODELS
We have considered only the simplest models in this paper.
Other more complex models of availability and release have
been proposed. For example, the mean times to availability for
a vesicle may change over time (Wong et al., 2003), vesicles may
also be released spontaneously in the absence of pre-synaptic
APs (Sterratt et al., 2011), and multiple vesicles may be readily
available for release at any site (although in this model only one
can be released per pre-synaptic spike) (de la Rocha and Parga,
2005). Stochastic simulations that faithfully reflect these models
can be readily devised by extension of the algorithms presented in
this paper.
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