1,126 research outputs found
Searching for Millisecond Pulsars: Surveys, Techniques and Prospects
Searches for millisecond pulsars (which we here loosely define as those with
periods 20 ms) in the Galactic field have undergone a renaissance in the
past five years. New or recently refurbished radio telescopes utilizing cooled
receivers and state-of-the art digital data acquisition systems are carrying
out surveys of the entire sky at a variety of radio frequencies. Targeted
searches for millisecond pulsars in point sources identified by the {\it Fermi}
Gamma-ray Space Telescope have proved phenomenally successful, with over 50
discoveries in the past five years. The current sample of millisecond pulsars
now numbers almost 200 and, for the first time in 25 years, now outnumbers
their counterparts in Galactic globular clusters. While many of these searches
are motivated to find pulsars which form part of pulsar timing arrays, a wide
variety of interesting systems are now being found. Following a brief overview
of the millisecond pulsar phenomenon, we describe these searches and present
some of the highlights of the new discoveries in the past decade. We conclude
with predictions and prospects for ongoing and future surveys.Comment: 16 pages, 3 figures, accepted for publication in Classical and
Quantum gravit
Goals, Strategies and First Discoveries of AO327, the Arecibo All-Sky 327 MHz Drift Pulsar Survey
We report initial results from AO327, a drift survey for pulsars with the
Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at
declinations of -1 to 28 degrees, excluding the region within 5 degrees of the
Galactic plane, where high scattering and dispersion make low-frequency surveys
sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125
us sampling time. The 60 s transit time through the AO327 beam means that the
survey is sensitive to very tight relativistic binaries even with no
acceleration searches. To date we have detected 44 known pulsars with periods
ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries
include three millisecond pulsars, three objects with periods of a few tens of
milliseconds typical of young as well as mildly recycled pulsars, a nuller, and
a rotating radio transient. Five of the new discoveries are in binary systems.
The second phase of AO327 will cover the sky at declinations of 28 to 38
degrees. We compare the sensitivity and search volume of AO327 to the Green
Bank North Celestial Cap survey and the GBT350 drift survey, both of which
operate at 350 MHz.Comment: Accepted for publication in Ap
VLBI astrometry of PSR J2222-0137: a pulsar distance measured to 0.4% accuracy
The binary pulsar J2222-0137 is an enigmatic system containing a partially
recycled millisecond pulsar and a companion of unknown nature. Whilst the low
eccentricity of the system favors a white dwarf companion, an unusual double
neutron star system is also a possibility, and optical observations will be
able to distinguish between these possibilities. In order to allow the absolute
luminosity (or upper limit) of the companion object to be properly calibrated,
we undertook astrometric observations with the Very Long Baseline Array to
constrain the system distance via a measurement of annual geometric parallax.
With these observations, we measure the parallax of the J2222-0137 system to be
3.742 +0.013 -0.016 milliarcseconds, yielding a distance of 267.3 +1.2 -0.9 pc,
and measure the transverse velocity to be 57.1 +0.3 -0.2 km/s. Fixing these
parameters in the pulsar timing model made it possible to obtain a measurement
of Shapiro delay and hence the system inclination, which shows that the system
is nearly edge-on (sin i = 0.9985 +/- 0.0005). Furthermore, we were able to
detect the orbital motion of J2222-0137 in our VLBI observations and measure
the longitude of ascending node. The VLBI astrometry yields the most accurate
distance obtained for a radio pulsar to date, and is furthermore the most
accurate parallax for any radio source obtained at "low" radio frequencies
(below ~5 GHz, where the ionosphere dominates the error budget). Using the
astrometric results, we show the companion to J2222-0137 will be easily
detectable in deep optical observations if it is a white dwarf. Finally, we
discuss the implications of this measurement for future ultra-high-precision
astrometry, in particular in support of pulsar timing arrays.Comment: 22 pages, 7 figures, accepted for publication in Ap
A Metal-rich Low-gravity Companion to a Massive Millisecond Pulsar
Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate ("black widow" or "redback") stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 ± 7 km s^(–1), implying a high pulsar mass, M_(psr)sin^3_i = 1.84 ± 0.11 M_☉, and a companion mass M_c sin^3_i = 0.193 ± 0.012 M_☉, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log_(10)(g) = 4.9 ± 0.3, and effective temperature 16, 000 ± 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses
A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10
We report on simultaneous X-ray and radio observations of the mode-switching
pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA
and Arecibo radio telescopes in November 2014. We confirm the synchronous
X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in
which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered
X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the
B-mode, and confirm their presence in Q-mode, where the pulsed fraction
increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence
for an increase in the X-ray pulsed fraction during B-mode on a timescale of
hours. The Q-mode X-ray spectrum requires a fit with a two-component model
(either a power-law plus blackbody or the sum of two blackbodies), while the
B-mode spectrum is well fit by a single blackbody (a single power-law is
rejected). With a maximum likelihood analysis, we found that in Q-mode the
pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K
and the unpulsed emission is a power-law with photon index ~2.5, while during
B-mode both the pulsed and unpulsed emission can be fit by either a blackbody
or a power law with similar values of temperature and photon index. A Chandra
image shows no evidence for diffuse X-ray emission. These results support a
scenario in which both unpulsed non-thermal emission, likely of magnetospheric
origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a
strong non-dipolar magnetic field (~10^{14} G), are present during both radio
modes and vary in intensity in a correlated way. This is broadly consistent
with the predictions of the partially screened gap model and does not
necessarily imply global magnetospheric rearrangements to explain the mode
switching.Comment: To be published on The Astrophysical Journa
Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry
To understand the nature of supernovae and neutron star (NS) formation, as
well as binary stellar evolution and their interactions, it is important to
probe the distribution of NS masses. Until now, all double NS (DNS) systems
have been measured to have a mass ratio close to unity (q 0.91). Here we
report the measurement of the individual masses of the 4.07-day binary pulsar
J0453+1559 from measurements of the rate of advance of periastron and Shapiro
delay: The mass of the pulsar is 1.559(5) and that of its companion
is 1.174(4) ; q = 0.75. If this companion is also a neutron star
(NS), as indicated by the orbital eccentricity of the system (e=0.11), then its
mass is the smallest precisely measured for any such object. The pulsar has a
spin period of 45.7 ms and a spin derivative of 1.8616(7) x; from these
we derive a characteristic age of ~ 4.1 x years and a magnetic field of
~ 2.9 x G,i.e, this pulsar was mildly recycled by accretion of matter
from the progenitor of the companion star. This suggests that it was formed
with (very approximately) its current mass. Thus NSs form with a wide range of
masses, which is important for understanding their formation in supernovae. It
is also important for the search for gravitational waves released during a
NS-NS merger: it is now evident that we should not assume all DNS systems are
symmetric
New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search
We present Clusterrank, a new algorithm for identifying dispersed
astrophysical pulses. Such pulses are commonly detected from Galactic pulsars
and rotating radio transients (RRATs), which are neutron stars with sporadic
radio emission. More recently, isolated, highly dispersed pulses dubbed fast
radio bursts (FRBs) have been identified as the potential signature of an
extragalactic cataclysmic radio source distinct from pulsars and RRATs.
Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo
327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range pc cm and periods in the range s. The new
pulsars have DMs in the range pc cm and periods in the
range s, and include two nullers and a mode-switching object.
We estimate an upper limit on the all-sky FRB rate of day for
bursts with a width of 10 ms and flux density mJy. The DMs of all
new discoveries are consistent with a Galactic origin. In comparing statistics
of the new RRATs with sources from the RRATalog, we find that both sets are
drawn from the same period distribution. In contrast, we find that the period
distribution of the new pulsars is different from the period distributions of
canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a
periodicity search. This indicates that Clusterrank is a powerful complement to
periodicity searches and uncovers a subset of the pulsar population that has so
far been underrepresented in survey results and therefore in Galactic pulsar
population models.Comment: 41 pages, 16 figures, 4 tables, accepted by ApJ; added minor
corrections to final ApJ proo
Using a decline in serum hCG between days 0-4 to predict ectopic pregnancy treatment success after single-dose methotrexate:a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>The current measure of treatment efficacy of single-dose methotrexate for ectopic pregnancy, is a fall in serum hCG of ≥15% between days 4–7 of treatment, which has a positive predictive value of 93% for treatment success. Two small studies have proposed a fall in serum hCG between days 0–4 after treatment confers similar, earlier prognostic information, with positive predictive values of 100% and 88% for treatment success. We sought to validate this in a large, independent cohort because of the potentially significant clinical implications.</p> <p>Methods</p> <p>We conducted a retrospective study of women (n=206) treated with single-dose methotrexate for ectopic pregnancy (pre-treatment serum hCG levels ≤3000 IU/L) at Scottish hospitals between 2006–2011. Women were divided into two cohorts based on whether their serum hCG levels rose or fell between days 0–4 after methotrexate. Treatment outcomes of women in each cohort were compared, and the test performance characteristics calculated. This methodology was repeated for the current measure (≥15% fall in serum hCG between days 4–7 of treatment) and an alternate early measure (<20% fall in serum hCG between days 0–4 of treatment), and all three measures were compared for their ability to predict medical treatment success.</p> <p>Results</p> <p>In our cohort, the positive predictive value of the current clinical measure was 89% (95% CI 84-94%) (121/136). A falling serum hCG between days 0–4 predicted treatment success in 85% (95% CI 79-92%) of cases (94/110) and a <20% fall in serum hCG between days 0–4 predicted treatment success in 94% (95% CI 88-100%) of cases (59/63). There was no significant difference in the ability of these tests to predict medical treatment success.</p> <p>Conclusions</p> <p>We have verified that a decline in serum hCG between days 0–4 after methotrexate treatment for ectopic pregnancies, with pre-treatment serum hCG levels ≤3000 IU/L, provides an early indication of likelihood of treatment success, and performs just as well as the existing measure, which only provides prognostic information on day 7.</p
Science and Literature: An Exploration Through a Shared Language
Science and fiction are often deemed opposing forces, incompatible “languages” and “cultures.” Science is the realm of fact and reality while fiction is mere fantasy, useless to the rational mind. Yet, the works of Jules Verne, Mary Shelley, Aldous Huxley, H.G. Wells, and numerous others continue to stand the test of time even as scientific knowledge and understanding broaden. Science and fiction, science and literature, are so often thought of as separate, irreconcilable entities and yet science fiction enraptures and intrigues. Science fiction is the playground of science. Where science has not yet or cannot dare to go, science fiction leaps forward eagerly. This creative thesis seeks to demonstrate a bridge between science and literature through a collection of original science fiction poems. This exploration is a culmination of research into the relationship between science and literature through scholarship and works of fiction, poetry’s relationship to both subjects, and scientific research into artificial intelligence, deep space travel, and time travel. The chapbook produced, The Silver Dark, uses science fiction as the thematic backdrop for the demonstration that science and literature can be and are connected through poetry, while also communicating complex scientifically accurate (with only a few artistic liberties) concepts in verse
- …
