364 research outputs found
Integrated gas turbine engine-nacelle
A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine
Integrated gas turbine engine-nacelle
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine
Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report
The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity
Observations of the Turbulence in the Scrape-Off-Layers of Alcator C-Mod and NSTX and Comparisons With Simualtion
Toward a first-principles integrated simulation of tokamak edge plasmas
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles
Strontium Isotope Geochemistry in the Central Part of the Great Plains (Dakota) Aquifer, U.S.A.. Applied Geochemistry
First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2
© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The attached file is the published version of the article
Recommended from our members
DEGAS 2 neutral transport modeling of high density, low temperature plasmas
Neutral transport in the high density, low temperature plasma regime is examined using the DEGAS 2 Monte Carlo neutral transport code. DEGAS 2 is shown to agree with an analytic fluid neutral model valid in this regime as long as the grid cell spacing is less than twice the neutral mean-free path. Using new atomic physics data provided by the collisional radiative code CRAMD, DEGAS 2 is applied to a detached Alcator C-Mod discharge. A model plasma with electron temperature {approximately}1 eV along detached flux tubes, between the target and the ionization front, is used to demonstrate that recombination is essential to matching the experimental data. With the CRAMD data, {approximately}20% of the total recombination is due to molecular activated recombination
- …
