4,028 research outputs found
Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions
A quantum-kinetic theory of direct and phonon mediated indirect optical
transitions is developed within the framework of the non-equilibrium Green's
function formalism. After validation against the standard Fermi-Golden-Rule
approach in the bulk case, it is used in the simulation of photocurrent
generation in ultra-thin crystalline silicon p-i-n-junction devices.Comment: 12 pages, 11 figure
Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results
We use ACE/SWICS elemental composition data to compare the variations in
solar wind fractionation as measured by SWICS during the last solar maximum
(1999-2001), the solar minimum (2006-2009) and the period in which the Genesis
spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate
our analysis in terms of solar wind regimes (i.e. originating from interstream
or coronal hole flows, or coronal mass ejecta). Abundances are normalized to
the low-FIP ion magnesium to uncover correlations that are not apparent when
normalizing to high-FIP ions. We find that relative to magnesium, the other
low-FIP elements are measurably fractionated, but the degree of fractionation
does not vary significantly over the solar cycle. For the high-FIP ions,
variation in fractionation over the solar cycle is significant: greatest for
Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance
ratios are examined as a function of solar wind speed, we find a strong
correlation, with the remarkable observation that the degree of fractionation
follows a mass-dependent trend. We discuss the implications for correcting the
Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap
A framework for power analysis using a structural equation modelling procedure
BACKGROUND: This paper demonstrates how structural equation modelling (SEM) can be used as a tool to aid in carrying out power analyses. For many complex multivariate designs that are increasingly being employed, power analyses can be difficult to carry out, because the software available lacks sufficient flexibility. Satorra and Saris developed a method for estimating the power of the likelihood ratio test for structural equation models. Whilst the Satorra and Saris approach is familiar to researchers who use the structural equation modelling approach, it is less well known amongst other researchers. The SEM approach can be equivalent to other multivariate statistical tests, and therefore the Satorra and Saris approach to power analysis can be used. METHODS: The covariance matrix, along with a vector of means, relating to the alternative hypothesis is generated. This represents the hypothesised population effects. A model (representing the null hypothesis) is then tested in a structural equation model, using the population parameters as input. An analysis based on the chi-square of this model can provide estimates of the sample size required for different levels of power to reject the null hypothesis. CONCLUSIONS: The SEM based power analysis approach may prove useful for researchers designing research in the health and medical spheres
9. Effect of insecticide-treated bed nets on haemoglobin values, prevalence and multiplicity of infection with Plasmodium falciparum in a randomized controlled trial in Tanzania
A randomized controlled trial of insecticide-treated bed nets (ITNs) was conducted in an area of high malaria transmission in Tanzania in order to assess the effects of ITNs on infection and anaemia. One hundred and twenty-two children, aged 5 to 24 months, were randomly allocated to 2 groups, one of which received ITNs. Outcome measures were assessed in 6 consecutive months with monthly cross-sectional surveys. These measures were haemoglobin values, Plasmodium falciparum prevalence and density, and multiplicity of infection determined by polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) of the msp2 locus. There was a significant increase in mean heamoglobin values and a significant decrease of 16·4% in microscopically determined P. falciparum prevalence in children in the ITN group six months after the start of the trial. Both effects were more pronounced in younger children. However, no significant difference was observed in parasite density or multiplicity of infection among infected children. Comparison with PCR results indicated that microscopically subpatent parasitaemia was more frequently found in children in the ITN group. This, together with the observed similar multiplicity in the 2 groups, suggests that infections are maintained despite ITN use, owing to the chronicity of infections. This study shows that ITNs reduce the risk of anaemia in highly exposed young children. The virtually unchanged multiplicity of infection indicates that the potentially protective concomitant immunity is not compromise
An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions
Increasing numbers of galleries, museums and archives are including ink jet printed materials into their collections, and therefore displays. There is evidence that the instability of these prints is such that images can suffer deterioration in print quality or in extreme cases, a loss of information over an extended period of time. This is shorter than the period typically required for perceptible deterioration to occur in many other paper-based artworks. The image stability of prints is affected by a number of factors some of which have already been studied. However the role played by the ink solvent in the loss of image quality has yet to be explored. This paper will outline research being undertaken to investigate the effects of solvent content which may increase/promote the loss in image quality of the hard copy prints when stored or displayed under a range of temperature and humidity conditions
Geochemical analysis of bulk marine sediment by Inductively Coupled Plasma–Atomic Emission Spectroscopy on board the JOIDES Resolution
Geochemical analyses on board the JOIDES Resolution have been enhanced with the addition of a Jobin-Yvon Ultrace inductively coupled plasma-atomic emission spectrometer (ICP-AES) as an upgrade from the previous X-ray fluorescence facility. During Leg 199, we sought to both challenge and utilize the capabilities of the ICP-AES in order to provide an extensive bulk-sediment geochemical database during the cruise. These near real-time analyses were then used to help characterize the recovered sedimentary sequences, calculate mass accumulation rates of the different sedimentary components, and assist with cruise and postcruise sampling requests. The general procedures, sample preparation techniques, and basic protocol for ICP-AES analyses on board ship are outlined by Murray et al. (2000) in Ocean Drilling Program Tech Note, 29. We expand on those concepts and offer suggestions for ICP-AES methodology, calibration by standard reference materials, data reduction procedures, and challenges that are specific to the analysis of bulk-sediment samples. During Leg 199, we employed an extensive bulk-sediment analytical program of ~600 samples of varying lithologies, thereby providing several opportunities for refinement of techniques. We also discuss some difficulties and challenges that were faced and suggest how to alleviate such occurrences for sedimentary chemical analyses during future legs
Structural evolution in the neutron-rich nuclei 106Zr and 108Zr
The low-lying states in 106Zr and 108Zr have been investigated by means of
{\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively.
A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For
the sequence of even-even Zr isotopes, the excitation energies of the first 2+
states reach a minimum at N = 64 and gradually increase as the neutron number
increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The
deformed ground state of 108Zr indicates that a spherical sub-shell gap
predicted at N = 70 is not large enough to change the ground state of 108Zr to
the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is
also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
- …
