1,031 research outputs found
Magnetotransport in the CeIrIn system: The influence of antiferromagnetic fluctuations
We present an overview of magnetotransport measurements on the heavy-fermion
superconductor CeIrIn. Sensitive measurements of the Hall effect and
magnetoresistance (MR) are used to elucidate the low temperature phase diagram
of this system. The normal-state magnetotransport is highly anomalous, and
experimental signatures of a pseudogap-like precursor state to
superconductivity as well as evidence for two distinct scattering times
governing the Hall effect and the MR are observed. Our observations point out
the influence of antiferromagnetic fluctuations on the magnetotransport in this
class of materials. The implications of these findings, both in the context of
unconventional superconductivity in heavy-fermion systems as well as in
relation to the high temperature superconducting cuprates are discussed
Hole Expansion Simulations of TWIP Steel Sheet Sample
In this work, the stretch flangeability of a TWIP steel sheet sample was investigated both experimentally and numerically through the hole expansion test. Uniaxial tension and disk compression tests were performed to characterize the flow behavior and plastic anisotropy for the TWIP steel sheet sample. The punch load-stroke curve, hole diameter and specimen surface strain distribution near the hole was measured. Then finite element simulations of the hole expansion test were carried out using the finite element code ABAQUS with three yield criteria: von Mises, Hill 1948 and Yld2000-2d. The predicted and experimental results were compared in terms of the final hole radii and the strain distribution.open111Nsciescopu
Hybridization gap and Fano resonance in SmB
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS)
measurements on the "Kondo insulator" SmB. The vast majority of surface
areas investigated was reconstructed but, infrequently, also patches of varying
size of non-reconstructed, Sm- or B-terminated surfaces were found. On the
smallest patches, clear indications for the hybridization gap and
inter-multiplet transitions were observed. On non-reconstructed surface areas
large enough for coherent co-tunneling we were able to observe clear-cut Fano
resonances. Our locally resolved STS indicated considerable finite conductance
on all surfaces independent of their structure.Comment: 5 pages, 4 figure
Magnetic structure of Cd-doped CeCoIn5
The heavy fermion superconductor CeCoIn5 is believed to be close to a
magnetic instability, but no static magnetic order has been found. Cadmium
doping on the In-site shifts the balance between superconductivity and
antiferromagnetism to the latter with an extended concentration range where
both types of order coexist at low temperatures. We investigated the magnetic
structure of nominally 10% Cd-doped CeCoIn5, being antiferromagnetically
ordered below T_N=3 K and superconducting below T_c=1.3 K, by elastic neutron
scattering. Magnetic intensity was observed only at the ordering wave vector
Q_AF = (1/2,1/2,1/2) commensurate with the crystal lattice. Upon entering the
superconducting state the magnetic intensity seems to change only little. The
commensurate magnetic ordering in CeCo(In1-xCdx)5 is in contrast to the
incommensurate antiferromagnetic ordering observed in the closely related
compound CeRhIn5. Our results give new insights in the interplay between
superconductivity and magnetism in the family of CeTIn5 (T=Co, Rh, and Ir)
based compounds.Comment: 4 pages, 4 figure
Possible re-entrant superconductivity in EuFe2As2 under pressure
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements
of the electrical resistivity. The antiferromagnetic spin-density-wave
transition at T_0 associated with the FeAs-layers is continuously suppressed
with increasing pressure, while the antiferromagnetic ordering temperature of
the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above
2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of
superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the
temperature \rho(T) is increasing again and exhibiting a maximum caused by the
ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant
superconductivity as it is observed in the ternary Chevrel phases or in the
rare-earth nickel borocarbides
A precursor state to unconventional superconductivity in CeIrIn
We present sensitive measurements of the Hall effect and magnetoresistance in
CeIrIn down to temperatures of 50 mK and magnetic fields up to 15 T. The
presence of a low temperature coherent Kondo state is established. Deviations
from Kohler's rule and a quadratic temperature dependence of the cotangent of
the Hall angle are reminiscent of properties observed in the high temperature
superconducting cuprates. The most striking observation pertains to the
presence of a \textit{precursor} state--characterized by a change in the Hall
mobility--that appears to precede the superconductivity in this material, in
similarity to the pseudogap in the cuprate high superconductors.Comment: 4 figure
Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field
We discuss a series of thermodynamic, magnetic and electrical transport
experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which
magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL)
into a field-induced FL state. Upon approaching the quantum-critical points
from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and
QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well
with the predictions of the spin-density wave (SDW) scenario for
three-dimensional (3D) critical spin-fluctuations. By contrast, the observed
singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for
neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the
magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic
transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs
at 10 T in M vs B (applied along the easy basal plane) above which the heavy
fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics,
special Series on "High Magnetic Field Facilities
Fourth Order Perturbation Theory for Normal Selfenergy in Repulsive Hubbard Model
We investigate the normal selfenergy and the mass enhancement factor in the
Hubbard model on the two-dimensional square lattice. Our purpose in this paper
is to evaluate the mass enhancement factor more quantitatively than the
conventional third order perturbation theory. We calculate it by expanding
perturbatively up to the fourth order with respect to the on-site repulsion
. We consider the cases that the system is near the half-filling, which are
similar situations to high- cuprates. As results of the calculations, we
obtain the large mass enhancement on the Fermi surface by introducing the
fourth order terms. This is mainly originated from the fourth order
particle-hole and particle-particle diagrams. Although the other fourth order
terms have effect of reducing the effective mass, this effect does not cancel
out the former mass enhancement completely and there remains still a large mass
enhancement effect. In addition, we find that the mass enhancement factor
becomes large with increasing the on-site repulsion and the density of
state (DOS) at the Fermi energy . According to many current reseaches,
such large and enhance the effective interaction between
quasiparticles, therefore the superconducting transition temperature
increases. On the other hand, the large mass enhancement leads the reduction of
the energy scale of quasiparticles, as a result, is reduced. When we
discuss , we have to estimate these two competitive effects.Comment: 6pages,8figure
Optical evidence for heavy charge carriers in FeGe
The optical spectrum of the cubic helimagnetic metal FeGe has been
investigated in the frequency range from 0.01 - 3.1 eV for different
temperatures from 30 K to 296 K. The optical conductivity shows the evolution
of a low energy (0.22 eV) interband transition and the development of a narrow
free carrier response with a strong energy and temperature dependence. The
frequency dependent effective mass and scattering rate derived from the optical
data indicate the formation of dressed quasi-particles with a mass
renormalization factor of 12. Similar to FeSi the spectral weight in FeGe is
not recovered over a broad frequency range, an effect usually attributed to the
influence of the on-site Coulomb interaction.Comment: 5 pages, 5 figure
- …
