We present an overview of magnetotransport measurements on the heavy-fermion
superconductor CeIrIn5. Sensitive measurements of the Hall effect and
magnetoresistance (MR) are used to elucidate the low temperature phase diagram
of this system. The normal-state magnetotransport is highly anomalous, and
experimental signatures of a pseudogap-like precursor state to
superconductivity as well as evidence for two distinct scattering times
governing the Hall effect and the MR are observed. Our observations point out
the influence of antiferromagnetic fluctuations on the magnetotransport in this
class of materials. The implications of these findings, both in the context of
unconventional superconductivity in heavy-fermion systems as well as in
relation to the high temperature superconducting cuprates are discussed