984 research outputs found

    Electron-electron interaction and charging effects in graphene quantum dots

    Full text link
    We analyze charging effects in graphene quantum dots. Using a simple model, we show that, when the Fermi level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and the Coulomb interaction leads to a strongly correlated ground state which can be approximated by either a Wigner crystal or a Laughlin like wave function. The existence of strong correlations modify the transport properties which show non equilibrium effects, similar to those predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.

    Flow equations for Hamiltonians: Contrasting different approaches by using a numerically solvable model

    Full text link
    To contrast different generators for flow equations for Hamiltonians and to discuss the dependence of physical quantities on unitarily equivalent, but effectively different initial Hamiltonians, a numerically solvable model is considered which is structurally similar to impurity models. By this we discuss the question of optimization for the first time. A general truncation scheme is established that produces good results for the Hamiltonian flow as well as for the operator flow. Nevertheless, it is also pointed out that a systematic and feasible scheme for the operator flow on the operator level is missing. For this, an explicit analysis of the operator flow is given for the first time. We observe that truncation of the series of the observable flow after the linear or bilinear terms does not yield satisfactory results for the entire parameter regime as - especially close to resonances - even high orders of the exact series expansion carry considerable weight.Comment: 25 pages, 10 figure

    Thermoluminescent dosimetry for LDEF experiment M0006

    Get PDF
    Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures

    Chirality probe of twisted bilayer graphene in the linear transport regime

    Full text link
    We propose a minimal transport experiment in the linear regime that can probe the chirality of twisted moir\'e structures. First, we point out that usual two-terminal conductance measurements cannot access the chirality of a system. Only with a third contact and in the presence of an in-plane magnetic field, a chiral system displays non-reciprocal transport even if all contacts are symmetric. We thus propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. The third lead can also be used as a current probe in the case of layer-discriminating contacts that can detect different handedness even in the absence of a magnetic field. Our exact symmetry considerations are supported by numerical calculations that confirm our conclusions and also demonstrate that there is a change of chirality around the magic angle.Comment: 13 pages, 6 figure

    Electronic transport in graphene: A semi-classical approach including midgap states

    Full text link
    Using the semi-classical Boltzmann theory, we calculate the conductivity as function of the carrier density. As usually, we include the scattering from charged impurities, but conclude that the estimated impurity density is too low in order to explain the experimentally observed mobilities. We thus propose an additional scattering mechanism involving midgap states which leads to a similar k-dependence of the relaxation time as charged impurities. The new scattering mechanism can account for the experimental findings such as the sublinear behavior of the conductivity versus gate voltage and the increase of the minimal conductivity for clean samples. We also discuss temperature dependent scattering due to acoustic phonons.Comment: 10 pages, 4 figure

    Zigzag materials: selective interchain couplings control the coexistence of one-dimensional physics and deviations from it

    Full text link
    The coexistence in the low-temperature spin-conducting phases of the zigzag materials BaCo2V2O8 and SrCo2V2O8 of one-dimensional (1D) physics with important deviations from it is not well understood. The studies of this paper account for an important selection rule that follows from interchain spin states being coupled more strongly within the spin dynamical structure factor of such zigzag materials whenever they are connected by a specific symmetry operation of the underlying lattice. In the case of excited states, this symmetry operation is only a symmetry in spin-space ifno electronic spin flip is performed within the generation of such states. Our results on both the role of selective interchain couplings in protecting the 1D physics and being behind deviations from it and on the dynamical properties being controlled by scattering of singlet pairs of physical spins 1/2 open the door to a key advance in the understanding of the physics of the spin chains in BaCo2V2O8 and SrCo2V2O8.Comment: 24 pages, 13 figure

    Effect of Holstein phonons on the optical conductivity of gapped graphene

    Full text link
    We study the optical conductivity of a doped graphene when a sublattice symmetry breaking is occurred in the presence of the electron-phonon interaction. Our study is based on the Kubo formula that is established upon the retarded self-energy. We report new features of both the real and imaginary parts of the quasiparticle self-energy in the presence of a gap opening. We find an analytical expression for the renormalized Fermi velocity of massive Dirac Fermions over broad ranges of electron densities, gap values and the electron-phonon coupling constants. Finally we conclude that the inclusion of the renormalized Fermi energy and the band gap effects are indeed crucial to get reasonable feature for the optical conductivity.Comment: 12 pages, 4 figures. To appear in Eur. Phys. J.

    Bacterial Contamination on Household Toys and Association with Water, Sanitation and Hygiene Conditions in Honduras

    Get PDF
    There is growing evidence that household water treatment interventions improve microbiological water quality and reduce diarrheal disease risk. Few studies have examined, however, the impact of water treatment interventions on household-level hygiene and sanitation. This study examined the association of four water and sanitation conditions (access to latrines, improved sanitation, improved water and the plastic biosand filter) on the levels of total coliforms and E. coli on existing and introduced toys during an on-going randomized controlled trial of the plastic biosand filter (plastic BSF). The following conditions were associated with decreased bacterial contamination on children’s toys: access to a latrine, access to improved sanitation and access to the plastic BSF. Overall, compared to existing toys, introduced toys had significantly lower levels of both E. coliand total coliforms. Results suggest that levels of fecal indicator bacteria contamination on children’s toys may be associated with access to improved water and sanitation conditions in the home. In addition, the fecal indicator bacteria levels on toys probably vary with duration in the household. Additional information on how these toys become contaminated is needed to determine the usefulness of toys as indicators or sentinels of water, sanitation and hygiene conditions, behaviors and risks

    Tomonaga-Luttinger model with an impurity for a weak two-body interaction

    Full text link
    The Tomonaga-Luttinger model with impurity is studied by means of flow equations for Hamiltonians. The system is formulated within collective density fluctuations but no use of the bosonization formula is made. The truncation scheme includes operators consisting of up to four fermion operators and is valid for small electron-electron interactions. In this regime, the exact expression for the anomalous dimension is recovered. Furthermore, we verify the phase diagram of Kane and Fisher also for intermediate impurity strength. The approach can be extended to more general one-body potentials.Comment: 10 pages, 1 figur
    • …
    corecore