1,161 research outputs found
Electron-electron interaction and charging effects in graphene quantum dots
We analyze charging effects in graphene quantum dots. Using a simple model,
we show that, when the Fermi level is far from the neutrality point, charging
effects lead to a shift in the electrostatic potential and the dot shows
standard Coulomb blockade features. Near the neutrality point, surface states
are partially occupied and the Coulomb interaction leads to a strongly
correlated ground state which can be approximated by either a Wigner crystal or
a Laughlin like wave function. The existence of strong correlations modify the
transport properties which show non equilibrium effects, similar to those
predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.
Flow equations for Hamiltonians: Contrasting different approaches by using a numerically solvable model
To contrast different generators for flow equations for Hamiltonians and to
discuss the dependence of physical quantities on unitarily equivalent, but
effectively different initial Hamiltonians, a numerically solvable model is
considered which is structurally similar to impurity models. By this we discuss
the question of optimization for the first time. A general truncation scheme is
established that produces good results for the Hamiltonian flow as well as for
the operator flow. Nevertheless, it is also pointed out that a systematic and
feasible scheme for the operator flow on the operator level is missing. For
this, an explicit analysis of the operator flow is given for the first time. We
observe that truncation of the series of the observable flow after the linear
or bilinear terms does not yield satisfactory results for the entire parameter
regime as - especially close to resonances - even high orders of the exact
series expansion carry considerable weight.Comment: 25 pages, 10 figure
Thermoluminescent dosimetry for LDEF experiment M0006
Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures
Electronic transport in graphene: A semi-classical approach including midgap states
Using the semi-classical Boltzmann theory, we calculate the conductivity as
function of the carrier density. As usually, we include the scattering from
charged impurities, but conclude that the estimated impurity density is too low
in order to explain the experimentally observed mobilities. We thus propose an
additional scattering mechanism involving midgap states which leads to a
similar k-dependence of the relaxation time as charged impurities. The new
scattering mechanism can account for the experimental findings such as the
sublinear behavior of the conductivity versus gate voltage and the increase of
the minimal conductivity for clean samples. We also discuss temperature
dependent scattering due to acoustic phonons.Comment: 10 pages, 4 figure
Effect of Holstein phonons on the optical conductivity of gapped graphene
We study the optical conductivity of a doped graphene when a sublattice
symmetry breaking is occurred in the presence of the electron-phonon
interaction. Our study is based on the Kubo formula that is established upon
the retarded self-energy. We report new features of both the real and imaginary
parts of the quasiparticle self-energy in the presence of a gap opening. We
find an analytical expression for the renormalized Fermi velocity of massive
Dirac Fermions over broad ranges of electron densities, gap values and the
electron-phonon coupling constants. Finally we conclude that the inclusion of
the renormalized Fermi energy and the band gap effects are indeed crucial to
get reasonable feature for the optical conductivity.Comment: 12 pages, 4 figures. To appear in Eur. Phys. J.
Universality of conductivity in interacting graphene
The Hubbard model on the honeycomb lattice describes charge carriers in
graphene with short range interactions. While the interaction modifies several
physical quantities, like the value of the Fermi velocity or the wave function
renormalization, the a.c. conductivity has a universal value independent of the
microscopic details of the model: there are no interaction corrections,
provided that the interaction is weak enough and that the system is at half
filling. We give a rigorous proof of this fact, based on exact Ward Identities
and on constructive Renormalization Group methods
Tomonaga-Luttinger model with an impurity for a weak two-body interaction
The Tomonaga-Luttinger model with impurity is studied by means of flow
equations for Hamiltonians. The system is formulated within collective density
fluctuations but no use of the bosonization formula is made. The truncation
scheme includes operators consisting of up to four fermion operators and is
valid for small electron-electron interactions. In this regime, the exact
expression for the anomalous dimension is recovered. Furthermore, we verify the
phase diagram of Kane and Fisher also for intermediate impurity strength. The
approach can be extended to more general one-body potentials.Comment: 10 pages, 1 figur
Photonic crystals for nano-light in moir\'e graphene superlattices
Graphene is an atomically thin plasmonic medium that supports highly confined
plasmon polaritons, or nano-light, with very low loss. Electronic properties of
graphene can be drastically altered when it is laid upon another graphene
layer, resulting in a moir\'e superlattice. The relative twist angle between
the two layers is a key tuning parameter of the interlayer coupling in thus
obtained twisted bilayer graphene (TBG). We studied propagation of plasmon
polaritons in TBG by infrared nano-imaging. We discovered that the atomic
reconstruction occurring at small twist angles transforms the TBG into a
natural plasmon photonic crystal for propagating nano-light. This discovery
points to a pathway towards controlling nano-light by exploiting quantum
properties of graphene and other atomically layered van der Waals materials
eliminating need for arduous top-down nanofabrication
Effect of Holstein phonons on the electronic properties of graphene
We obtain the self-energy of the electronic propagator due to the presence of
Holstein polarons within the first Born approximation. This leads to a
renormalization of the Fermi velocity of one percent. We further compute the
optical conductivity of the system at the Dirac point and at finite doping
within the Kubo-formula. We argue that the effects due to Holstein phonons are
negligible and that the Boltzmann approach which does not include inter-band
transition and can thus not treat optical phonons due to their high energy of
eV, remains valid.Comment: 13 pages, 4 figure
Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis
The spin-boson model has nontrivial quantum phase transitions at zero
temperature induced by the spin-boson coupling. The bosonic numerical
renormalization group (BNRG) study of the critical exponents and
of this model is hampered by the effects of boson Hilbert space
truncation. Here we analyze the mean-field spin boson model to figure out the
scaling behavior of magnetization under the cutoff of boson states . We
find that the truncation is a strong relevant operator with respect to the
Gaussian fixed point in and incurs the deviation of the exponents
from the classical values. The magnetization at zero bias near the critical
point is described by a generalized homogeneous function (GHF) of two variables
and . The universal function has a
double-power form and the powers are obtained analytically as well as
numerically. Similarly, is found to be a GHF of
and . In the regime , the truncation produces no effect.
Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure
- …
