515 research outputs found

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui

    Exploring Critical Overdensity Thresholds in Inflationary Models of Primordial Black Holes Formation

    Full text link
    In this paper we study the production of Primordial Black Holes (PBHs) from inflation in order to explain the Dark Mater (DM) in the Universe. The evaluation of the fractional PBHs abundance to DM is sensitive to the value of the threshold δc\mathrm{\delta_c} and the exact value of δc\mathrm{\delta_c} is sensitive to the specific shape of the cosmological fluctuations. Different mechanisms producing PBHs lead to different thresholds and hence to different fractional abundances of PBHs. In this study, we examine various classes of inflationary models proposed in the existing literature to elucidate the formation of PBHs and we evaluate numerically the associated threshold values. Having evaluated the thresholds we compute the abundances of PBHs to DM using the Press Schecter approach and the Peak Theory. Given the influence of different power spectra on the thresholds, we investigate whether these inflationary models can successfully account for a significant fraction of DM. Moreover, we provide suggested values for the critical threshold. By examining the interplay between inflationary models, threshold values, and PBH abundances, our study aims to shed light on the viability of PBHs as a candidate for DM and contributes to the ongoing discussion regarding the nature of DM in the UniverseComment: 17 pages, 4 figure

    The Impact of Flavour Changing Neutral Gauge Bosons on B->X_s gamma

    Full text link
    The branching ratio of the rare decay B->X_s gamma provides potentially strong constraints on models beyond the Standard Model. Considering a general scenario with new heavy neutral gauge bosons, present in particular in Z' and gauge flavour models, we point out two new contributions to the B->X_s gamma decay. The first one originates from one-loop diagrams mediated by gauge bosons and heavy exotic quarks with electric charge -1/3. The second contribution stems from the QCD mixing of neutral current-current operators generated by heavy neutral gauge bosons and the dipole operators responsible for the B->X_s gamma decay. The latter mixing is calculated here for the first time. We discuss general sum rules which have to be satisfied in any model of this type. We emphasise that the neutral gauge bosons in question could also significantly affect other fermion radiative decays as well as non-leptonic two-body B decays, epsilon'/epsilon, anomalous (g-2)_mu and electric dipole moments.Comment: 31 pages, 5 figures; version published on JHEP; added magic QCD numbers for flavour-violating Z gauge boson contribution to B -> X_s gamm

    A Re-evaluation of Electron-Transfer Mechanisms in Microbial Electrochemistry: Shewanella Releases Iron that Mediates Extracellular Electron Transfer

    Get PDF
    Exoelectrogenic bacteria can couple their metabolism to extracellular electron acceptors, including macroscopic electrodes, and this has applications in energy production, bioremediation and biosensing. Optimisation of these technologies relies on a detailed molecular understanding of extracellular electron-transfer (EET) mechanisms, and Shewanella oneidensis MR-1 (MR-1) has become a model organism for such fundamental studies. Here, cyclic voltammetry was used to determine the relationship between the surface chemistry of electrodes (modified gold, ITO and carbon electrodes) and the EET mechanism. On ultra-smooth gold electrodes modified with self-assembled monolayers containing carboxylic-acid-terminated thiols, an EET pathway dominates with an oxidative catalytic onset at 0.1V versus SHE. Addition of iron(II)chloride enhances the catalytic current, whereas the siderophore deferoxamine abolishes this signal, leading us to conclude that this pathway proceeds via an iron mediated electron transfer mechanism. The same EET pathway is observed at other electrodes, but the onset potential is dependent on the electrolyte composition and electrode surface chemistry. EET pathways with onset potentials above -0.1V versus SHE have previously been ascribed to direct electron-transfer (DET) mechanisms through the surface exposed decaheme cytochromes (MtrC/OmcA) of MR-1. In light of the results reported here, we propose that the previously identified DET mechanism of MR-1 needs to be re-evaluated

    Interactions between proteins bound to biomembranes

    Full text link
    We study a physical model for the interaction between general inclusions bound to fluid membranes that possess finite tension, as well as the usual bending rigidity. We are motivated by an interest in proteins bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly symmetric inclusions. This repulsion extends over length scales of order tens of nanometers, and contrasts with the membrane-mediated contact attraction for similar inclusions on tensionless membranes. For non circularly symmetric inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell membranes and the striations that are observed on their coats.Comment: 22 pages, 2 figure

    Free energy of colloidal particles at the surface of sessile drops

    Full text link
    The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals π/2\pi/2 a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.Comment: 24 pages, 19 figure
    corecore