588 research outputs found
Cross-lingual Entity Alignment via Joint Attribute-Preserving Embedding
Entity alignment is the task of finding entities in two knowledge bases (KBs)
that represent the same real-world object. When facing KBs in different natural
languages, conventional cross-lingual entity alignment methods rely on machine
translation to eliminate the language barriers. These approaches often suffer
from the uneven quality of translations between languages. While recent
embedding-based techniques encode entities and relationships in KBs and do not
need machine translation for cross-lingual entity alignment, a significant
number of attributes remain largely unexplored. In this paper, we propose a
joint attribute-preserving embedding model for cross-lingual entity alignment.
It jointly embeds the structures of two KBs into a unified vector space and
further refines it by leveraging attribute correlations in the KBs. Our
experimental results on real-world datasets show that this approach
significantly outperforms the state-of-the-art embedding approaches for
cross-lingual entity alignment and could be complemented with methods based on
machine translation
In Situ Characterisation of Permanent Magnetic Quadrupoles for focussing proton beams
High intensity laser driven proton beams are at present receiving much
attention. The reasons for this are many but high on the list is the potential
to produce compact accelerators. However two of the limitations of this
technology is that unlike conventional nuclear RF accelerators lasers produce
diverging beams with an exponential energy distribution. A number of different
approaches have been attempted to monochromise these beams but it has become
obvious that magnetic spectrometer technology developed over many years by
nuclear physicists to transport and focus proton beams could play an important
role for this purpose. This paper deals with the design and characterisation of
a magnetic quadrupole system which will attempt to focus and transport
laser-accelerated proton beams.Comment: 20 pages, 42 figure
Supercooled confined water and the Mode Coupling crossover temperature
We present a Molecular Dynamics study of the single particle dynamics of
supercooled water confined in a silica pore. Two dynamical regimes are found:
close to the hydrophilic substrate molecules are below the Mode Coupling
crossover temperature, , already at ambient temperature. The water closer
to the center of the pore (free water) approaches upon supercooling as
predicted by Mode Coupling Theories. For free water the crossover temperature
and crossover exponent are extracted from power-law fits to both the
diffusion coefficient and the relaxation time of the late region.Comment: To be published, Phys. Rev. Lett., 4 pages, 3 figures, revTeX, minor
changes in the figures, references added, changes in the tex
X-ray Absorption Near-Edge Structure (XANES) at the O K-Edge of Bulk Co<sub>3</sub>O<sub>4</sub>: Experimental and Theoretical Studies
We combine theoretical and experimental X-ray absorption near-edge spectroscopy (XANES) to probe the local environment around cationic sites of bulk spinel cobalt tetraoxide (Co3O4). Specifically, we analyse the oxygen K-edge spectrum. We find an excellent agreement between our calculated spectra based on the density functional theory and the projector augmented wave method, previous calculations as well as with the experiment. The oxygen K-edge spectrum shows a strong pre-edge peak which can be ascribed to dipole transitions from O 1s to O 2p states hybridized with the unoccu- pied 3d states of cobalt atoms. Also, since Co3O4 contains two types of Co atoms, i.e., Co3+ and Co2+, we find that contribution of Co2+ ions to the pre-edge peak is solely due to single spin-polarized t2g orbitals (dxz, dyz, and dxy) while that of Co3+ ions is due to spin-up and spin-down polarized eg orbitals (dx2−y2 and dz2 ). Furthermore, we deduce the magnetic moments on the Co3+ and Co2+ to be zero and 3.00 μB respectively. This is consistent with an earlier experimental study which found that the magnetic structure of Co3O4 consists of antiferromagnetically ordered Co2+ spins, each of which is surrounded by four nearest neighbours of oppositely directed spins
Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions
We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
Discriminating between Cognitive and Supportive Group Therapies for Chronic Mental Illness
This descriptive and comparative study employed a Q-sort process to describe common factors of therapy in two group therapies for inpatients with chronic mental illness. While pharmacological treatments for chronic mental illness are prominent, there is growing evidence that cognitive therapy is also efficacious. Groups examined were part of a larger study comparing the added benefits of cognitive versus supportive group therapy to the treatment milieu. In general, items described the therapist’s attitudes and behaviors, the participants’ attitudes and behaviors, or the group interactions. Results present items that were most and least characteristic of each therapy and items that discriminate between the two modalities. Therapists in both groups demonstrated good therapy skills. However, the cognitive group was described as being more motivated and active than the supportive group, indicating that the groups differed in terms of common as well as specific factors of treatment
Spectroscopic studies of Dy-168,170 using CLARA and PRISMA
Preliminary results from an experiment aiming at Dy-170. Submitted to the LNL
Annual Report 2008.Comment: 2 pages, 4 figures, Submitted to the LNL Annual Report 200
Morphology of supported polymer electrolyte ultra-thin films: a numerical study
Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM
fuel cell catalyst layers has significant impact on the electrochemical
activity and transport phenomena that determine cell performance. In those
regions, Nafion can be found as an ultra-thin film, coating the catalyst and
the catalyst support surfaces. The impact of the hydrophilic/hydrophobic
character of these surfaces on the structural formation of the films has not
been sufficiently explored yet. Here, we report about Molecular Dynamics
simulation investigation of the substrate effects on the ionomer ultra-thin
film morphology at different hydration levels. We use a mean-field-like model
we introduced in previous publications for the interaction of the hydrated
Nafion ionomer with a substrate, characterized by a tunable degree of
hydrophilicity. We show that the affinity of the substrate with water plays a
crucial role in the molecular rearrangement of the ionomer film, resulting in
completely different morphologies. Detailed structural description in different
regions of the film shows evidences of strongly heterogeneous behavior. A
qualitative discussion of the implications of our observations on the PEMFC
catalyst layer performance is finally proposed
Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics
Using periodic boundary conditions and a constant applied field, we have
simulated current flow through an 8.125 Angstrom internal diameter, rigid,
atomistic channel with polar walls in a rigid membrane using explicit ions and
SPC/E water. Channel and bath currents were computed from ten 10-ns
trajectories for each of 10 different conditions of concentration and applied
voltage. An electric field was applied uniformly throughout the system to all
mobile atoms. On average, the resultant net electric field falls primarily
across the membrane channel, as expected for two conductive baths separated by
a membrane capacitance. The channel is rarely occupied by more than one ion.
Current-voltage relations are concentration-dependent and superlinear at high
concentrations.Comment: Accepted for publication in Biophysical Journa
- …