836 research outputs found
Experimental Electronic Structure and Interband Nesting in BaVS_3
The correlated 3d sulphide BaVS_3 is a most interesting compound because of
the apparent coexistence of one-dimensional and three-dimensional properties.
Our experiments explain this puzzle and shed new light on its electronic
structure. High-resolution angle-resolved photoemission measurements in a 4eV
wide range below the Fermi level explored the coexistence of weakly correlated
a_1g wide-band and strongly correlated e_g narrow-band d-electrons that is
responsible for the complicated behavior of this material. The most relevant
result is the evidence for a_1g--e_g inter-band nesting condition.Comment: 4 pages, 3 figure
The impact of two-dimensional elastic disk
The impact of a two-dimensional elastic disk with a wall is numerically
studied. It is clarified that the coefficient of restitution (COR) decreases
with the impact velocity. The result is not consistent with the recent
quasi-static theory of inelastic collisions even for very slow impact. The
abrupt drop of COR is found due to the plastic deformation of the disk, which
is assisted by the initial internal motion.(to be published in J. Phys. Soc.
Jpn.)Comment: 6 Pages,2 figure
An optimally concentrated Gabor transform for localized time-frequency components
Gabor analysis is one of the most common instances of time-frequency signal
analysis. Choosing a suitable window for the Gabor transform of a signal is
often a challenge for practical applications, in particular in audio signal
processing. Many time-frequency (TF) patterns of different shapes may be
present in a signal and they can not all be sparsely represented in the same
spectrogram. We propose several algorithms, which provide optimal windows for a
user-selected TF pattern with respect to different concentration criteria. We
base our optimization algorithm on -norms as measure of TF spreading. For
a given number of sampling points in the TF plane we also propose optimal
lattices to be used with the obtained windows. We illustrate the potentiality
of the method on selected numerical examples
Multigluon tree amplitudes with a pair of massive fermions
We consider the calculation of n-point multigluon tree amplitudes with a pair
of massive fermions in QCD. We give the explicit transformation rules of this
kind of massive fermion-pair amplitudes with respect to different reference
momenta and check the correctness of them by SUSY Ward identities. Using these
rules and onshell BCFW recursion relation, we calculate the analytic results of
several n-point multigluon amplitudes.Comment: 15page
On tree amplitudes with gluons coupled to gravitons
In this paper, we study the tree amplitudes with gluons coupled to gravitons.
We first study the relations among the mixed amplitudes. With BCFW on-shell
recursion relation, we will show the color-order reversed relation,
-decoupling relation and KK relation hold for tree amplitudes with gluons
coupled to gravitons. We then study the disk relation which expresses mixed
amplitudes by pure gluon amplitudes. More specifically we will prove the disk
relation for mixed amplitudes with gluons coupled to one graviton. Using the
disk relation and the properties of pure gluon amplitudes, the color-order
reversed relation, -decoupling relation and KK relation for mixed
amplitudes can also be proved. Finally, we give some brief discussions on
BCJ-like relation for mixed amplitudes.Comment: 33pages,no figur
Simulation for the oblique impact of a lattice system
The oblique collision between an elastic disk and an elastic wall is
numerically studied.
We investigate the dependency of the tangential coefficient of restitution on
the incident angle of impact.
From the results of simulation, our model reproduces experimental results and
can be explained by a phenomenological theory of the oblique impact.Comment: 30 pages, 9 figures, submitted to J. Phys. Soc. Japa
New MACRO results on atmospheric neutrino oscillations
The final results of the MACRO experiment on atmospheric neutrino
oscillations are presented and discussed. The data concern different event
topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb
Scattering of the high energy muons in absorbers was used to estimate the
neutrino energy of each event. The angular distributions, the L/E_nu
distribution, the particle ratios and the absolute fluxes all favour nu_mu -->
nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A
discussion is made on the Monte Carlos used for the atmospheric neutrino flux.
Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200
Monodromy and Jacobi-like Relations for Color-Ordered Amplitudes
We discuss monodromy relations between different color-ordered amplitudes in
gauge theories. We show that Jacobi-like relations of Bern, Carrasco and
Johansson can be introduced in a manner that is compatible with these monodromy
relations. The Jacobi-like relations are not the most general set of equations
that satisfy this criterion. Applications to supergravity amplitudes follow
straightforwardly through the KLT-relations. We explicitly show how the
tree-level relations give rise to non-trivial identities at loop level.Comment: 28 pages, 8 figures, JHEP
Monodromy--like Relations for Finite Loop Amplitudes
We investigate the existence of relations for finite one-loop amplitudes in
Yang-Mills theory. Using a diagrammatic formalism and a remarkable connection
between tree and loop level, we deduce sequences of amplitude relations for any
number of external legs.Comment: 24 pages, 6 figures, v2 typos corrected, reference adde
- …
