39 research outputs found

    Epithelial cell integrin beta1 is required for developmental angiogenesis in the pituitary gland

    Get PDF
    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin beta1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin beta1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin beta1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin beta1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin beta1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development

    Integrating Computational Biology and Forward Genetics in Drosophila

    Get PDF
    Genetic screens are powerful methods for the discovery of gene–phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of “omics” data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for functional prioritization in Drosophila, called Endeavour-HighFly, and the Atonal network, are publicly available resources. A systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly enhances the process of gene function and gene–gene association discovery

    The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina

    No full text
    Methylation of the regulatory region of the elongation of very-long-chain fatty acids-like 2 (ELOVL2) gene, an enzyme involved in elongation of long-chain polyunsaturated fatty acids, is one of the most robust biomarkers of human age, but the critical question of whether ELOVL2 plays a functional role in molecular aging has not been resolved. Here, we report that Elovl2 regulates age-associated functional and anatomical aging in vivo, focusing on mouse retina, with direct relevance to age-related eye diseases. We show that an age-related decrease in Elovl2 expression is associated with increased DNA methylation of its promoter. Reversal of Elovl2 promoter hypermethylation in vivo through intravitreal injection of 5-Aza-2'-deoxycytidine (5-Aza-dc) leads to increased Elovl2 expression and rescue of age-related decline in visual function. Mice carrying a point mutation C234W that disrupts Elovl2-specific enzymatic activity show electrophysiological characteristics of premature visual decline, as well as early appearance of autofluorescent deposits, well-established markers of aging in the mouse retina. Finally, we find deposits underneath the retinal pigment epithelium in Elovl2 mutant mice, containing components found in human drusen, a pathologic hallmark of age related macular degeneration. These findings indicate that ELOVL2 activity regulates aging in mouse retina, provide a molecular link between polyunsaturated fatty acids elongation and visual function, and suggest novel therapeutic strategies for the treatment of age-related eye diseases

    The Lipid Elongation Enzyme ELOVL2 is a molecular regulator of aging in the retina

    Full text link
    ABSTRACTMethylation of the regulatory region of the Elongation Of Very Long Chain Fatty Acids-Like 2 (ELOVL2) gene, an enzyme involved in elongation of long-chain polyunsaturated fatty acids, is one of the most robust biomarkers of human age, but the critical question of whether ELOVL2 plays a functional role in molecular aging has not been resolved. Here, we report that Elovl2 regulates age-associated functional and anatomical aging in vivo, focusing on mouse retina, with direct relevance to age-related eye diseases. We show that an age-related decrease in Elovl2 expression is associated with increased DNA methylation of its promoter. Reversal of Elovl2 promoter hypermethylation in vivo through intravitreal injection of 5-Aza-2’-deoxycytidine (5-aza-dc) leads to increased Elovl2 expression and rescue of age-related decline in visual function. Mice carrying a point mutation C234W that disrupts Elovl2-specific enzymatic activity show electrophysiological characteristics of premature visual decline, as well as early appearance of autofluorescent deposits, well-established markers of aging in the mouse retina. Finally, we find deposits underneath the retinal pigment epithelium in Elovl2 mutant mice, containing components of complement system and lipid metabolism. These findings indicate that ELOVL2 activity regulates aging in mouse retina, provide a molecular link between polyunsaturated fatty acids elongation and visual functions, and suggest novel therapeutic strategies for treatment of age-related eye diseases.</jats:p
    corecore