3,597 research outputs found
Permanent Draft Genome Sequence for Frankia sp. Strain EI5c, a Single-Spore Isolate of a Nitrogen-Fixing Actinobacterium, Isolated from the Root Nodules of Elaeagnus angustifolia
Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus. Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes
Permanent draft genome sequence of Frankia sp. strain ACN1ag, a nitrogen-fixing actinobacterium isolated from the root nodules of Alnus glutinosa
Frankia strain ACN1ag is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes
Permanent draft genome sequence of Frankia sp. strain AvcI1, a nitrogen-fixing actinobacterium isolated from the root nodules of Alnus viridis subsp. crispa grown in Canada
Frankia strain AvcI1, isolated from root nodules of Alnus viridis subsp. crispa, is a member of Frankia lineage Ia, which is able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report a 7.7-Mbp draft genome sequence with a G+C content of 72.41% and 6,470 candidate protein-encoding genes
Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod
Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond
Permanent Draft Genome Sequence of Frankia sp. Strain BR, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina equisetifolia
Frankia sp. strain BR is a member of Frankia lineage Ic and is able to reinfect plants of the Casuarinaceae family. Here, we report a 5.2-Mbp draft genome sequence with a G+C content of 70.0% and 4,777 candidate protein-encoding genes
Permanent draft genome sequences for two variants of Frankia sp. strain CpI1, the first Frankia strain isolated from root nodules of Comptonia peregrina
Frankia stains CpI1-S and CpI1-P are members of Frankia lineage Ia that are able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report two 7.6-Mbp draft genome sequences with 6,396 and 6,373 candidate protein-coding genes for CpI1-S and CpI1-P, respectively
Permanent draft genome sequence of Ensifer sp. strain LCM 4579, a salt-tolerant, nitrogen-fixing bacterium isolated from Senegalese soil
The genus Ensifer (formerly Sinorhizobium) contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.1-Mb draft genome sequence of Ensifer sp. strain LCM 4579, with a G+C content of 62.4% and 5,613 candidate protein-encoding genes
High temporal resolution sampling reveals reef fish settlement is highly clustered
Coral reef fish larvae settle on reefs predominantly at night around the new-moon phase, after an early developmental period spent in the pelagic environment. Most sampling is conducted across whole nights, and any studies that have examined the frequency of arrival within nights have typically been limited to coarse sampling time scales of 1–5 h. Here, we present results for arrival numbers of fish caught between dusk and midnight from light traps sampled every 15 min at an Indonesian coral reef, providing the finest temporal resolution for this type of study to date. A spatial analysis by distance indices analysis, adapted to temporal data, revealed clustering of reef arrival times for many species, with an increase in catches immediately after dusk dropping off towards midnight. Importantly, the timing of clusters differed among species, indicating that different factors determine the timing of arrival among taxa. Our results support the hypothesis that larval behaviour influences the timing of arrival at a coral reef for different fish species
Developmental contributions to macronutrient selection: A randomized controlled trial in adult survivors of malnutrition
Background and objectives: Birthweight differences between kwashiorkor and marasmus suggest that intrauterine factors influence the development of these syndromes of malnutrition and may modulate risk of obesity through dietary intake. We tested the hypotheses that the target protein intake in adulthood is associated with birthweight, and that protein leveraging to maintain this target protein intake would influence energy intake (EI) and body weight in adult survivors of malnutrition.Methodology: Sixty-three adult survivors of marasmus and kwashiorkor could freely compose a diet from foods containing 10, 15 and 25 percentage energy from protein (percentage of energy derived from protein (PEP); Phase 1) for 3 days. Participants were then randomized in Phase 2 (5 days) to diets with PEP fixed at 10%, 15% or 25%.Results: Self-selected PEP was similar in both groups. In the groups combined, selected PEP was 14.7, which differed significantly (P < 0.0001) from the null expectation (16.7%) of no selection. Self-selected PEP was inversely related to birthweight, the effect disappearing after adjusting for sex and current body weight. In Phase 2, PEP correlated inversely with EI (P = 0.002) and weight change from Phase 1 to 2 (P = 0.002). Protein intake increased with increasing PEP, but to a lesser extent than energy increased with decreasing PEP.Conclusions and implications: Macronutrient intakes were not independently related to birthweight or diagnosis. In a free-choice situation (Phase 1), subjects selected a dietary PEP significantly lower than random. Lower PEP diets induce increased energy and decreased protein intake, and are associated with weight gain
- …
