2,695 research outputs found

    Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Full text link
    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-type stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.Comment: IAUS Conference Proceeding

    Electrical Conductivity of Fermi Liquids. I. Many-body Effect on the Drude Weight

    Full text link
    On the basis of the Fermi liquid theory, we investigate the many-body effect on the Drude weight. In a lattice system, the Drude weight DD is modified by electron-electron interaction due to Umklapp processes, while it is not renormalized in a Galilean invariant system. This is explained by showing that the effective mass mm' for Dn/mD\propto n/m' is defined through the current, not velocity, of quasiparticle. It is shown that the inequality D>0D>0 is required for the stability against the uniform shift of the Fermi surface. The result of perturbation theory applied for the Hubbard model indicates that DD as a function of the density nn is qualitatively modified around half filling n1n\sim 1 by Umklapp processes.Comment: 20 pages, 2 figures; J. Phys. Soc. Jpn. Vol.67, No.

    Poly(styrene-co-vinylbenzylchloride-co-divinylbenzene) coated iron oxide: Synthesis and effects on size and morphology

    Get PDF
    Iron oxide nanoparticles were coated with a polymer synthesized from the monomers of styrene, divinylbenzene, and vinylbenzylchloride. The resultant polymer microspheres from synthesis without nanoparticle loading are primarily monodispersed with a diameter of 3.45 μm as measured by scanning electron microscopy. The addition of 1% nanoparticles by mass appears to decrease the size of the microspheres down to 2.04 μm as well as increase the polydispersity. This trend is also seen to continue as you add more nanoparticles to the system going from 3.45 μm with 0% nanoparticles down to below 1 μm for 5% nanoparticles. This indicates that the particles are not just incorporated into the polymer matrix but act as nucleation sites to begin the polymerization process. The polymerization process was found to have no effect on the nanoparticles themselves as the magnetic characterization showed only a mass dilution in saturation when corrected by thermal gravimetric analysis

    Infant cortex responds to other humans from shortly after birth

    Get PDF
    A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos

    Get PDF
    Ultra-high energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultra-high energy processes in the Universe. These particles, with energies above 1016eV10^{16}\mathrm{eV}, interact very rarely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. The ARA detector is currently being constructed at South Pole. It is designed to use the Askaryan effect, the emission of radio waves from neutrino-induced cascades in the South Pole ice, to detect neutrino interactions at very high energies. With antennas distributed among 37 widely-separated stations in the ice, such interactions can be observed in a volume of several hundred cubic kilometers. Currently 3 deep ARA stations are deployed in the ice of which two have been taking data since the beginning of the year 2013. In this publication, the ARA detector "as-built" and calibrations are described. Furthermore, the data reduction methods used to distinguish the rare radio signals from overwhelming backgrounds of thermal and anthropogenic origin are presented. Using data from only two stations over a short exposure time of 10 months, a neutrino flux limit of 3106GeV/(cm2 s sr)3 \cdot 10^{-6} \mathrm{GeV} / (\mathrm{cm^2 \ s \ sr}) is calculated for a particle energy of 10^{18}eV, which offers promise for the full ARA detector.Comment: 21 pages, 34 figures, 1 table, includes supplementary materia

    Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection

    Get PDF
    Dendritic cells can capture and transfer retroviruses in vitro across synaptic cell-cell contacts to uninfected cells, a process called trans-infection. Whether trans-infection contributes to retroviral spread in vivo remains unknown. Here, we visualize how retroviruses disseminate in secondary lymphoid tissues of living mice. We demonstrate that murine leukemia virus (MLV) and human immunodeficiency virus (HIV) are first captured by sinus-lining macrophages. CD169/Siglec-1, an I-type lectin that recognizes gangliosides, captures the virus. MLV-laden macrophages then form long-lived synaptic contacts to trans-infect B-1 cells. Infected B-1 cells subsequently migrate into the lymph node to spread the infection through virological synapses. Robust infection in lymph nodes and spleen requires CD169, suggesting that a combination of fluid-based movement followed by CD169-dependent trans-infection can contribute to viral spread
    corecore