78 research outputs found

    Chemical Imaging of Evolving Amyloid Plaque Pathology and Associated Aβ Peptide Aggregation in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    One of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid β (Aβ) plaques. While Aβ has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular Aβ plaque pathology manifests itself upon aggregation of distinct Aβ peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques. As plaque pathology precipitates long before any clinical symptoms occur, targeting the Aβ aggregation processes provides a promising target for early interventions. However, the chain of events of when, where and what Aβ species aggregate and form plaques remains unclear. The aim of the current study was to investigate the potential of MALDI-IMS as a tool to study the evolving pathology in transgenic mouse models for AD. To that end, we used an emerging, chemical imaging modality - MALDI imaging mass spectrometry - that allows for delineating Aβ aggregation with specificity at the single plaque level. We identified that plaque formation occurs first in cortical regions and that these younger plaques contain higher levels of 42 amino acid-long Aβ (Aβ1-42). Plaque maturation was found to be characterized by a relative increase in deposition of Aβ1-40, which was associated with the appearance of a cored morphology of the plaques. Finally, other C-terminally truncated Aβ species (Aβ1-38 and Aβ1-39) exhibited a similar aggregation pattern as Aβ1-40, suggesting that these species have similar aggregation characteristics. These results suggest that initial plaque formation is seeded by Aβ1-42; a process that is followed by plaque maturation upon deposition of Aβ1-40 as well as deposition by other C-terminally modified Aβ species

    Engineered antibodies: new possibilities for brain PET?

    Get PDF
    International audienceAlmost 50 million people worldwide are affected by Alzheimer's disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand's pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands

    Synaptic density in aging mice measured by [18F]SynVesT-1 PET

    No full text
    Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice.Wild type C57BL/6 mice divided into three age groups (4–5 months (n = 7), 12–14 months (n = 11), 17–19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers.We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed
    • …
    corecore