12,051 research outputs found
Method of Attaching Strain Gauges to Various Materials
A method is provided to bond strain gauges to various materials. First, a tape with an adhesive backing is placed across the inside of the fixture frame. The strain gauge is flatly placed against the adhesive backing and coated with a thin, uniform layer of adhesive. The tape is then removed from the fixture frame and placed, strain gauge side down, on the material to be tested. If the material is a high reluctance material, the induction heating source is placed on the tape. If the material is a low reluctance material, a plate with a ferric side and a rubber side is placed, ferric side down, onto the tape. The induction heating source is then placed upon the rubber side. If the material is an insulator material, a ferric plate is placed on the tape. The induction heating source is then placed on the ferric plate. The inductive heating source then generates frequenty from 60 to 70 kilocycles to inductively heat either low reluctance material, ferric side, of ferric plate and provides incidental pressure of approximately five pounds per square inch to the tape for two minutes, thoroughly curing the adhesive. The induction heating source, and, if necessary, the plate or ferric plate, are then removed from the tape after one minute. The tape is then removed from the bonded strain gauge
Comparison of modelled and empirical atmospheric propagation data
The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented
Partnerships: A Potential Solution to the Common-Property Problem but a Problem for a Antitrust Authorities
L\'evy Processes on as Infinitely Divisible Representations
L\'evy processes on bialgebras are families of infinitely divisible
representations. We classify the generators of L\'evy processes on the compact
forms of the quantum algebras , where is a simple Lie algebra. Then
we show how the processes themselves can be reconstructed from their generators
and study several classical stochastic processes that can be associated to
these processes.Comment: 13 pages, LATEX file, ASI-TPA/13/99 (TU Clausthal); 6/99
(Preprint-Reihe Mathmatik, Univ. Greifswald)
Absence of a consistent classical equation of motion for a mass-renormalized point charge
The restrictions of analyticity, relativistic (Born) rigidity, and negligible
O(a) terms involved in the evaluation of the self electromagnetic force on an
extended charged sphere of radius "a" are explicitly revealed and taken into
account in order to obtain a classical equation of motion of the extended
charge that is both causal and conserves momentum-energy. Because the
power-series expansion used in the evaluation of the self force becomes invalid
during transition time intervals immediately following the application and
termination of an otherwise analytic externally applied force, transition
forces must be included during these transition time intervals to remove the
noncausal pre-acceleration and pre-deceleration from the solutions to the
equation of motion without the transition forces. For the extended charged
sphere, the transition forces can be chosen to maintain conservation of
momentum-energy in the causal solutions to the equation of motion within the
restrictions of relativistic rigidity and negligible O(a) terms under which the
equation of motion is derived. However, it is shown that renormalization of the
electrostatic mass to a finite value as the radius of the charge approaches
zero introduces a violation of momentum-energy conservation into the causal
solutions to the equation of motion of the point charge if the magnitude of the
external force becomes too large. That is, the causal classical equation of
motion of a point charge with renormalized mass experiences a high acceleration
catastrophe.Comment: 13 pages, No figure
Cross-grid display and computer input study Final report, Apr. - Dec. 1969
Feasibility of plasma panels as graphic display device
Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature
Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs
Students\u27 use of personal technology in the classroom: analyzing the perceptions of the digital generation
Faculty frequently express concerns about students’ personal use of information
and communication technologies in today’s university classrooms. As a requirement
of a graduate research methodology course in a university in Ontario,
Canada, the authors conducted qualitative research to gain an in-depth understanding
of students’ perceptions of this issue. Their findings reveal students’
complex considerations about the acceptability of technology use. Their analysis
of the broader contexts of students’ use reveals that despite a technological revolution,
university teaching practices have remained largely the same, resulting in
‘cultural lag’ within the classroom. While faculty are technically ‘in charge’, students
wield power through course evaluations, surveillance technologies and
Internet postings. Neoliberalism and the corporatisation of the university have
engendered an ‘entrepreneurial student’ customer who sees education as a means
to a career. Understanding students’ perceptions and their technological, social
and political contexts offers insights into the tensions within today’s classrooms
Electro-optic routing of photons from single quantum dots in photonic integrated circuits
Recent breakthroughs in solid-state photonic quantum technologies enable
generating and detecting single photons with near-unity efficiency as required
for a range of photonic quantum technologies. The lack of methods to
simultaneously generate and control photons within the same chip, however, has
formed a main obstacle to achieving efficient multi-qubit gates and to harness
the advantages of chip-scale quantum photonics. Here we propose and demonstrate
an integrated voltage-controlled phase shifter based on the electro-optic
effect in suspended photonic waveguides with embedded quantum emitters. The
phase control allows building a compact Mach-Zehnder interferometer with two
orthogonal arms, taking advantage of the anisotropic electro-optic response in
gallium arsenide. Photons emitted by single self-assembled quantum dots can be
actively routed into the two outputs of the interferometer. These results,
together with the observed sub-microsecond response time, constitute a
significant step towards chip-scale single-photon-source de-multiplexing,
fiber-loop boson sampling, and linear optical quantum computing.Comment: 7 pages, 4 figues + supplementary informatio
Nanomechanical single-photon routing
The merger between integrated photonics and quantum optics promises new
opportunities within photonic quantum technology with the very significant
progress on excellent photon-emitter interfaces and advanced optical circuits.
A key missing functionality is rapid circuitry reconfigurability that
ultimately does not introduce loss or emitter decoherence, and operating at a
speed matching the photon generation and quantum memory storage time of the
on-chip quantum emitter. This ambitious goal requires entirely new active
quantum-photonic devices by extending the traditional approaches to
reconfigurability. Here, by merging nano-optomechanics and deterministic
photon-emitter interfaces we demonstrate on-chip single-photon routing with low
loss, small device footprint, and an intrinsic time response approaching the
spin coherence time of solid-state quantum emitters. The device is an essential
building block for constructing advanced quantum photonic architectures
on-chip, towards, e.g., coherent multi-photon sources, deterministic
photon-photon quantum gates, quantum repeater nodes, or scalable quantum
networks.Comment: 7 pages, 3 figures, supplementary informatio
- …
