460 research outputs found
The LMT Galaxies' 3 mm Spectroscopic Survey: First Results
The molecular phase of the interstellar medium (ISM) in galaxies offers
fundamental insight for understanding star-formation processes and how stellar
feedback affects the nuclear activity of certain galaxies. We present here
Large Millimeter Telescope spectra obtained with the Redshift Search Receiver,
a spectrograph that cover simultaneously the 3 mm band from 74 to 111 GHz with
a spectral resolution of around 100 km/s. The observed galaxies that have been
detected previously in HCN, have different degrees of nuclear activity, one
normal galaxy (NGC 6946), the starburst prototype (M 82) and two ultraluminous
infrared galaxies (ULIRGs, IRAS 17208-0014 and Mrk 231). We plotted our data in
the HCO+/HCN vs. HCN/13CO diagnostic diagram finding that NGC 6946 and M 82 are
located close to other normal galaxies; and that both IRAS 17208-0014 and Mrk
231 are close to the position of the well known ULIRG Arp 220 reported by Snell
et al. (2011). We found that in Mrk 231 -- a galaxy with a well known active
galactic nucleus -- the HCO+/HCN ratio is similar to the ratio observed in
other normal galaxies.Comment: Proceedings to appear in "Massive Young Star Clusters Near and Far:
From the Milky Way to Reionization", 2013 Guillermo Haro Conference. Eds. Y.
D. Mayya, D. Rosa-Gonzalez, & E. Terlevich, INAOE and AMC. 5 pages, 1 figur
First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion
Young and close multiple systems are unique laboratories to probe the initial
dynamical interactions between forming stellar systems and their dust and gas
environment. Their study is a key building block to understanding the high
frequency of main-sequence multiple systems. However, the number of detected
spectroscopic young multiple systems that allow dynamical studies is limited.
GW Orionis is one such system. It is one of the brightest young T Tauri stars
and is surrounded by a massive disk. Our goal is to probe the GW Orionis
multiplicity at angular scales at which we can spatially resolve the orbit. We
used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with
an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared
visibilities and closure phases with a good UV coverage we carry out the first
image reconstruction of GW Ori from infrared long-baseline interferometry. We
obtain the first infrared image of a T Tauri multiple system with astronomical
unit resolution. We show that GW Orionis is a triple system, resolve for the
first time the previously known inner pair (separation 1.4 AU) and
reveal a new more distant component (GW Ori C) with a projected separation of
8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1)
H-band flux ratio of the inner components suggests that either GW Ori B is
undergoing a preferential accretion event that increases its disk luminosity or
that the estimate of the masses has to be revisited in favour of a more equal
mass-ratio system that is seen at lower inclination. Accretion disk models of
GW Ori will need to be completely reconsidered because of this outer companion
C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201
Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula
Extremely high velocity emission likely related to jets is known to occur in
some proto-Planetary Nebulae. However, the molecular complexity of this
kinematic component is largely unknown. We observed the known extreme outflow
from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in
the full frequency range from 73 to 111 GHz with the RSR receiver on the Large
Millimetre Telescope. We detected the molecules SiO, HCN, SO, and CO.
All molecular transitions, with the exception of the latter are detected for
the first time in this source, and all present emission with velocities up to a
few hundred km s. IRAS 16342-3814 is therefore the only source of this
kind presenting extreme outflow activity simultaneously in all these molecules,
with SO and SiO emission showing the highest velocities found of these species
in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component
with a FWHM 700 km s. The extreme outflow gas consists of dense
gas (n 10--10 cm), with a mass larger than
0.02--0.15 M. The relatively high abundances of SiO and SO may
be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society Letter
Infrared Imaging of Capella with the IOTA Closure Phase Interferometer
We present infrared aperture synthesis maps produced with the upgraded IOTA
interferometer. Michelson interferograms on the close binary system Capella
(Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using
the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to
determine the relative position of the binary components with milliarcsecond
(mas) precision and to track their movement along the approx. 14 degree arc
covered by our observation run. We briefly describe the algorithms used for
visibility and closure phase estimation. Three different Hybrid Mapping and
Bispectrum Fitting techniques were implemented within one software framework
and used to reconstruct the source brightness distribution. By dividing our
data into subsets, the system could be mapped at three epochs, revealing the
motion of the stars. The precise position of the binary components was also
determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10
and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas
and Theta_Ab=5.8 +/- 0.8 mas.
To improve the u, v-plane coverage, we compensated this orbital motion by
applying a rotation-compensating coordinate transformation. The resulting
model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution
of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21
First visual orbit for the prototypical colliding-wind binary WR 140
Wolf-Rayet stars represent one of the final stages of massive stellar
evolution. Relatively little is known about this short-lived phase and we
currently lack reliable mass, distance, and binarity determinations for a
representative sample. Here we report the first visual orbit for WR
140(=HD193793), a WC7+O5 binary system known for its periodic dust production
episodes triggered by intense colliding winds near periastron passage. The IOTA
and CHARA interferometers resolved the pair of stars in each year from
2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining
our results with the recent improved double-line spectroscopic orbit of Fahed
et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/-
0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star
with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with
uncertainties times 6 smaller than previous work and paves the way for detailed
modeling of the system. Our newly measured flux ratios at the near-infrared H
and Ks bands allow an SED decomposition and analysis of the component
evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec
LLiST - a new star tracker camera for tip-tilt correction at IOTA
The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA)
has been upgraded with a new star tracker camera. The camera features a
backside-illuminated CCD chip offering doubled overall quantum efficiency and a
four times higher system gain compared to the previous system. Tests carried
out to characterize the new system showed a higher system gain with a lower
read-out noise electron level. Shorter read-out cycle times now allow to
compensate tip-tilt fluctuations so that their error imposed on visibility
measurements becomes comparable to, and even smaller than, that of higher-order
aberrations.Comment: To be published in "New Frontiers in Stellar Interferometry", W. A.
Traub, ed., SPIE Proceedings Series, Vol. 5491, paper [5491-126]; 10 pages, 6
figures, 1 table; Latex spie class, uses packages graphicx and url; bib style
spiebib; keywords: interferometry, tip-tilt correctio
Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models
Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary
with the interesting property that both stars are very similar in abundance but
one is sharp-lined and the other is broad-lined. We present combined
interferometric and spectroscopic studies of LamVir. The small scale of the
LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array
(IOTA), allowing us to determine its elements as well as the physical
properties of the components to high accuracy. The masses of the two stars are
determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors
respectively, and the two stars are found to have the same temperature of 8280
+/- 200 K. The accurately determined properties of LamVir allow comparisons
between observations and current stellar evolution models, and reasonable
matches are found. The best-fit stellar model gives LamVir a subsolar
metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical
parameters of LamVir also allow us to study its tidal evolution time scales and
status. Although currently atomic diffusion is considered to be the most
plausible cause of the Am phenomenon, the issue is still being actively debated
in the literature. With the present study of the properties and evolutionary
status of LamVir, this system is an ideal candidate for further detailed
abundance analyses that might shed more light on the source of the chemical
anomalies in these A stars.Comment: 43 Pages, 13 figures. Accepted for publication in Ap
- …