13 research outputs found

    Water, oceanic fracture zones and the lubrication of subducting plate boundaries - insights from seismicity

    Get PDF
    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power lawdescribes the earthquakemagnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its alongstrike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value 'bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones

    Seismic anisotropy indicates organised melt beneath the Mid-Atlantic Ridge aids seafloor spreading

    Get PDF
    Skip Nav Destination RESEARCH ARTICLE| AUGUST 04, 2023 Seismic anisotropy indicates organized melt beneath the Mid-Atlantic Ridge aids seafloor spreading J.M. Kendall; D. Schlaphorst; C.A. Rychert; N. Harmon; M. Agius; S. Tharimena Author and Article Information Geology (2023) 51 (10): 968–972. https://doi.org/10.1130/G51550.1 Article history Standard View Open thePDFfor in another window Cite Share Icon Share Permissions Abstract Lithospheric plates diverge at mid-ocean ridges and asthenospheric mantle material rises in response. The rising material decompresses, which can result in partial melting, potentially impacting the driving forces of the system. Yet the geometry and spatial distribution of the melt as it migrates to the ridge axis are debated. Organized melt fabrics can cause strong seismic anisotropy, which can be diagnostic of melt, although this is typically not found at ridges. We present anisotropic constraints from an array of 39 ocean-bottom seismometers deployed on 0–80 Ma lithosphere from March 2016 to March 2017 near the equatorial Mid-Atlantic Ridge (MAR). Local and SKS measurements show anisotropic fast directions away from the ridge axis, which are consistent with strain and associated fabric caused by plate motions with short delay times, δt (<1.1 s). Near the ridge axis, we find several ridge-parallel fast splitting directions, φ, with SKS δt that are much longer (1.7–3.8 s). This is best explained by ridge-parallel sub-vertical orientations of sheet-like melt pockets. This observation is much different than anisotropic patterns observed at other ridges, which typically reflect fabric related to plate motions. One possibility is that thicker sub-ridge lithosphere with steep sub-ridge topography beneath slower spreading centers focuses melt into vertical, ridge-parallel melt bands, which effectively weakens the plate. Associated buoyancy forces elevate the sub-ridge plate, providing greater potential energy and enhancing the driving forces of the plates

    Tidal triggering of microseismicity at the equatorial mid‐Atlantic ridge, inferred from the PI‐LAB experiment

    Get PDF
    The gravitational pulls from the moon and the sun result in tidal forces which influence both Earth's solid and water mass. These stresses are periodically added to the tectonic ones and may become sufficient for initiating rupture in fault systems critically close to failure. Previous research indicates correlations between increased seismicity rates and low tides for fast- and intermediate-spreading mid-ocean ridges in the Pacific Ocean. Here, we present a microseismicity data set (4,719 events) recorded by an ocean bottom seismometer deployment at the equatorial Mid-Atlantic Ridge. We show that low, as well as decreasing ocean water level, result in relatively elevated seismicity rates at higher magnitudes (lower b-values), translated into increased probabilities of stronger event occurrence at or towards low tides. Moreover, seismic bursts (enhanced activity rate clusters), occurring at rates well above the reference seismicity, are exclusively present during values of either high tidally induced extensional stresses or high extensional stress rates. Although the b-value differences are not significant enough to be conclusive, the seismicity rate variations exhibit statistical significance, supporting the previous findings for tidal triggering at low tides within normal-faulting regimes and extending the range of observations to slow-spreading ridges. Observed triggering of slip on low angle faults at low tides is predicted by Coulomb stress modeling. The triggering of slip on high angle faults observed here, is not easily explained without another factor. It may be related to the presence of a shallow magma body beneath the ridge, as supported by previous seismic imaging in the region

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    Variable water input controls evolution of the Lesser Antilles volcanic arc

    Get PDF
    Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards

    Variation in upper plate crustal and lithospheric mantle structure in the greater and lesser antilles from ambient noise tomography

    No full text
    The crust and upper mantle structure of the Greater and Lesser Antilles Arc provides insights into key subduction zone processes in a unique region of slow convergence of old slow-spreading oceanic lithosphere. We use ambient noise tomography gathered from island broadband seismic stations and the temporary ocean bottom seismometer network installed as part of the Volatile Recycling in the Lesser Antilles experiment to map crustal and upper mantle shear-wave velocity of the eastern Greater Antilles and the Lesser Antilles Arc. Taking the depth to the 2.0 km/s contour as a proxy, we find sediment thickness up to 15 km in the south in the Grenada and Tobago basins and thinner sediments near the arc and to the north. We observe thicker crust, based on the depth to the 4.0 km/s velocity contour, beneath the arc platforms with the greatest crustal thickness of around 30 km, likely related to crustal addition from arc volcanism through time. There are distinct low velocity zones (4.2–4.4 km/s) in the mantle wedge (30–50 km depth), beneath the Mona Passage, Guadeloupe-Martinique, and the Grenadines. The Mona passage mantle anomaly may be related to ongoing extension there, while the Guadeloupe-Martinique and Grenadine anomalies are likely related to fluid flux, upwelling, and/or partial melt related to nearby slab features. The location of the Guadeloupe-Martinique anomaly is slightly to the south of the obliquely subducted fracture zones. This feature could be explained by either three-dimensional mantle flow, a gap in the slab, variable slab hydration, and/or melt dynamics including ponding and interactions with the upper plate

    Back-propagating super-shear rupture in the 2016 Mw7.1 Romanche transform fault earthquake

    No full text
    How an earthquake rupture propagates strongly influences potentially destructive ground shaking. Complex ruptures often involve slip along multiple faults, masking information on the frictional behaviour of fault zones. Geometrically smooth ocean transform fault plate boundaries offer a favourable environment to study fault dynamics, because strain is accommodated along a single, wide fault zone that offsets homogeneous geology. Here we present an analysis of the 2016 M7.1 earthquake on the Romanche fracture zone in the equatorial Atlantic, using data from both nearby seafloor seismometers and global seismic networks. We show that this rupture had two phases: (1) upward and eastward propagation towards a weaker region where the transform fault intersects the mid-ocean ridge, then (2) unusual back-propagation westwards at super-shear speed toward the centre of the fault. We suggest that deep rupture into weak fault segments facilitated greater seismic slip on shallow locked zones. This highlights that even earthquakes along a single distinct fault zone can be highly dynamic. Observations of back-propagating ruptures are sparse, and the possibility of reverse propagation is largely absent in rupture simulations and unaccounted for in hazard assessments

    Slab to back-arc to arc: fluid and melt pathways through the mantle wedge beneath the Lesser Antilles

    Get PDF
    Volatiles expelled from subducted plates promote melting of the overlying warm mantle, feeding arc volcanism. However, debates continue over the factors controlling melt generation and transport, and how these determine the placement of volcanoes. To broaden our synoptic view of these fundamental mantle wedge processes, we image seismic attenuation beneath the Lesser Antilles arc, an end-member system that slowly subducts old, tectonized lithosphere. Punctuated anomalies with high ratios of bulk-to-shear attenuation (Qκ−1/Qμ−1 > 0.6) and VP/VS (>1.83) lie 40 km above the slab, representing expelled fluids that are retained in a cold boundary layer, transporting fluids toward the back-arc. The strongest attenuation (1000/QS ~ 20), characterizing melt in warm mantle, lies beneath the back-arc, revealing how back-arc mantle feeds arc volcanoes. Melt ponds under the upper plate and percolates toward the arc along structures from earlier back-arc spreading, demonstrating how slab dehydration, upper-plate properties, past tectonics, and resulting melt pathways collectively condition volcanism

    Variation in Upper Plate Crustal and Lithospheric Mantle Structure in the Greater and Lesser Antilles from Ambient Noise Tomography

    Get PDF
    The crust and upper mantle structure of the Greater and Lesser Antilles Arc provides insights into key subduction zone processes in a unique region of slow convergence of old slow-spreading oceanic lithosphere. We use ambient noise tomography gathered from island broadband seismic stations and the temporary ocean bottom seismometer network installed as part of the Volatile Recycling in the Lesser Antilles experiment to map crustal and upper mantle shear-wave velocity of the eastern Greater Antilles and the Lesser Antilles Arc. Taking the depth to the 2.0 km/s contour as a proxy, we find sediment thickness up to 15 km in the south in the Grenada and Tobago basins and thinner sediments near the arc and to the north. We observe thicker crust, based on the depth to the 4.0 km/s velocity contour, beneath the arc platforms with the greatest crustal thickness of around 30 km, likely related to crustal addition from arc volcanism through time. There are distinct low velocity zones (4.2–4.4 km/s) in the mantle wedge (30–50 km depth), beneath the Mona Passage, Guadeloupe-Martinique, and the Grenadines. The Mona passage mantle anomaly may be related to ongoing extension there, while the Guadeloupe-Martinique and Grenadine anomalies are likely related to fluid flux, upwelling, and/or partial melt related to nearby slab features. The location of the Guadeloupe-Martinique anomaly is slightly to the south of the obliquely subducted fracture zones. This feature could be explained by either three-dimensional mantle flow, a gap in the slab, variable slab hydration, and/or melt dynamics including ponding and interactions with the upper plate
    corecore