538 research outputs found

    Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect

    Get PDF
    We have investigated the origin of rapidly adhering (RA) cells in three cases of neural tube defects (two anencephali, one encephalocele). We were able to demonstrate the presence of glial fibrillary acidic (GFA) protein in variable percentages (4–80%) of RA cells cultured for 4–6 days by use of indirect immunofluorescence with GFA antiserum. Cells cultured from amniotic fluids of normal pregnancies and fetal fibroblasts were completely GFA protein negative. GFA protein is well established as a highly specific marker for astrocytes. Demonstration of astrocytes may prove to be a criterion of high diagnostic value for neural tube defects. The percentage of astrocytes decreased with increasing culture time, while the percentage of fibronectin positive cells increased both in amniotic fluid cell cultures from neural tube defects and normal pregnancies

    Municipal Ethical Standards: The Need for a New Approach Report

    Get PDF
    The New York State Commission on Government Integrity investigated numerous situations throughout the state that revealed just how bad the current law is. Our findings and a pro- posed municipal ethics act that we drafted to correct the law\u27s deficiencies are contained in the following report, Municipal Ethical Standards: The Need for a New Approach. Our pro- posed Act would set out the minimum ethical standards that should be observed in every municipality throughout the state. The premise here is that there are certain basic features to good government that make sense for all governments, no matter what their size or location - rural or suburban, upstate or downstate. If the proposed Act became law, localities would be able to enact more stringent regulations if they wanted to, but no local government could have standards that fell below the floor put in place by the Act. The Governor has had a bill introduced in the Legislature that is patterned after the law we proposed. The State Assembly has held public hearings on the bill and it is hopeful that in the 1990 legislative session, New Yorkers will get the strong municipal ethics law they need and deserve

    Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species

    Get PDF
    SummaryThe human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1–3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4–11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry

    J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo

    Get PDF
    It has been suggested that substrate adhesion molecules of the tenascin family may be responsible for the segmented outgrowth of motor axons and neural crest cells during formation of the peripheral nervous system. We have used two monoclonal antibodies (M1B4 and 578) and an antiserum [KAF9(1)] to study the expression of J1/tenascin-related molecules within the somites of the chick embryo. Neural crest cells were identified with monoclonal antibodies HNK-1 and 20B4. Young somites are surrounded by J1/tenascin immunoreactive material, while old sclerotomes are immunoreactive predominantly in their rostral halves, as described by other authors (Tan et al. 1987--Proc. natn. Acad. Sci. U.S.A. 84, 7977; Mackie et al. 1988--Development 102, 237). At intermediate stages of development, however, immunoreactivity is found mainly in the caudal half of each sclerotome. After ablation of the neural crest, the pattern of immunoreactivity is no longer localised to the rostral halves of the older, neural-crest-free sclerotomes. SDS-polyacrylamide gel electrophoresis of affinity-purified somite tissue, extracted using M1B4 antibody, shows a characteristic set of bands, including one of about 230 x 10(3), as described for cytotactin, J1-200/220 and the monomeric form of tenascin. Affinity-purified somite material obtained from neural-crest-ablated somites reveals some of the bands seen in older control embryos, but the high molecular weight components (120-230 x 10(3] are missing. Young epithelial somites also lack the higher molecular mass components. The neural crest may therefore participate in the expression of J1/tenascin-related molecules in the chick embryo. These results suggest that these molecules are not directly responsible for the segmented outgrowth of precursors of the peripheral nervous system

    Postoperative peri-axillary seroma following axillary artery cannulation for surgical treatment of acute type A aortic dissection

    Get PDF
    The arterial cannulation site for optimal tissue perfusion and cerebral protection during cardiopulmonary bypass (CPB) for surgical treatment of acute type A aortic dissection remains controversial. Right axillary artery cannulation confers significant advantages, because it provides antegrade arterial perfusion during cardiopulmonary bypass, and allows continuous antegrade cerebral perfusion during hypothermic circulatory arrest, thereby minimizing global cerebral ischemia. However, right axillary artery cannulation has been associated with serious complications, including problems with systemic perfusion during cardiopulmonary bypass, problems with postoperative patency of the artery due to stenosis, thrombosis or dissection, and brachial plexus injury. We herein present the case of a 36-year-old Caucasian man with known Marfan syndrome and acute type A aortic dissection, who had direct right axillary artery cannulation for surgery of the ascending aorta. Postoperatively, the patient developed an axillary perigraft seroma. As this complication has, not, to our knowledge, been reported before in cardiothoracic surgery, we describe this unusual complication and discuss conservative and surgical treatment options

    Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing

    Get PDF
    OBJECTIVES: Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. METHODS: Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. RESULTS: We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. CONCLUSIONS: Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities

    The L1 cell adhesion molecule constrains dendritic spine density in pyramidal neurons of the mouse cerebral cortex

    Get PDF
    A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association. This mutation is a known variant in the human L1 syndrome of intellectual disability. L1 was localized by immunofluorescence staining to spine heads and dendrites of cortical pyramidal neurons. L1 coimmunoprecipitated with Ankyrin B (220 kDa isoform) from lysates of wild type but not L1YH forebrain. This study provides insight into the molecular mechanism of spine regulation and underscores the potential for this adhesion molecule to regulate cognitive and other L1-related functions that are abnormal in the L1 syndrome
    corecore