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Abstract: We search for effective axions with super-Planckian decay constants in type

IIB string models. We argue that such axions can be realised as long winding trajectories

in complex-structure moduli space by an appropriate flux choice. Our main findings are:

the simplest models with aligned winding in a 2-axion field space fail due to a general no-

go theorem. However, equally simple models with misaligned winding, where the effective

axion is not close to any of the fundamental axions, appear to work to the best of our

present understanding. These models have large decay constants but no large monotonic

regions in the potential, making them unsuitable for large-field inflation. We also show

that our no-go theorem can be avoided by aligning three or more axions. We argue that,

contrary to misaligned models, such models can have both large decay constants and large

monotonic regions in the potential. Our results may be used to argue against the refined

Swampland Distance Conjecture and strong forms of the axionic Weak Gravity Conjecture.

It becomes apparent, however, that realising inflation is by far harder than just producing

a light field with large periodicity.
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1 Introduction

One of the most prominent aspects of the landscape-swampland program [1–3] is the quest

for large field ranges in string compactifications. One reason for this is the interest in

large-field inflation. Another is the hope for a deeper understanding of general quantum

gravity constraints and therefore of quantum gravity itself.

In the present paper, we focus on large axionic field ranges. We do not take the road

of monodromy [4, 5] or its modern variant of F -term axion monodromy [6–8]. Instead,

we pursue the idea of constructing an effective large-f axion starting from two or more

fundamental axions in the UV [9]. Specifically, we argue that such constructions can

plausibly be realised using flux constraints in the complex-structure sector of type IIB string

theory [10]. The main limitation is that we do not (yet) have an explicit geometry and a

concrete flux choice. If our results stand up, they arguably lead to a tension with the Weak

Gravity Conjecture (WGC) [3], at least in some of its stronger forms (for recent analyses in

the axion context, see, e.g., [10–30]). In addition, our effective axion with parametrically

large f might be interpreted as violating the refined form [31] of the Swampland Distance

Conjecture (SDC) [1, 2].
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Before discussing our concrete setup, let us qualify what we mean by a parametrically

large field range: there are many examples in string theory of infinite directions in field

space. However, in all such known examples, moving super-Planckian distances causes a

tower of states to become exponentially light [2, 29, 31–41] (see [42, 43] for caveats). This

implies an exponentially falling cut-off. By parametrically large field distance we mean a

distance ∼ N ·Mp, with N � 1 a flux number, over which no such light tower appears. In

this sense, our constructions might serve as counter-examples to the refined SDC, possibly

calling for a weakening of the claim. We find this interesting independently of whether

the potential of the emerging large-f axion turns out to be suitable for inflation. Indeed,

it will become clear that obtaining a large-f effective axion unsuitable for inflation is the

simpler task. To turn this into a model of natural inflation, one must avoid short-range

oscillations in the axion potential and stabilise moduli at a fairly high scale. This is much

more demanding.

Our basic method is the restriction of a multi-axion field space to a winding tra-

jectory by an appropriate flux choice [10].1 Concretely, certain linear combinations of

complex-structure axions receive a mass from type IIB 3-form fluxes such that only a

one-dimensional, potentially very long, winding trajectory survives. In the large-complex-

structure limit and at tree-level, the corresponding axion is exponentially light. Originally,

this was suggested as a model of ‘winding inflation’ [10], see also [48–51].2 Subsequently,

it was pointed out that, in related type IIA models, a parametrically large f strongly con-

strains the achievable instanton hierarchy and hence the potential [32, 61]. In particular,

it was argued there that a large-f effective axion can be constructed in the mirror-dual of

CP4
(1,1,2,2,6)[12] but no monotonic region suitable for inflation exists. In fact, the situation

is complicated further in this model because, as we will show, flux-backreaction becomes

a troubling factor. While it is unclear whether these issues are generic in type IIA, we

will argue that they can be avoided in type IIB.3 Furthermore, in comparison to type

IIB, type IIA constructions do not allow for an easy separation between the masses of the

complex-structure moduli and the AdS scale, and less is known about possible uplifting

mechanisms. It is hence mandatory to understand the type IIB situation.

A reasonable strategy is to first establish examples of large field ranges in type IIB

before addressing the even more difficult task of large-field inflation. Recently, it was found

in [42] that large field ranges can indeed be obtained in simple toroidal models. This raises

hopes that one can actually construct low-energy effective field theories (EFTs) for axions

with parametrically large effective decay constants as part of the landscape. By this we

mean working with general Calabi-Yau threefolds and stabilising the saxions. The purpose

of this paper is to perform a detailed analysis of this possibility.

1This can be viewed as the Higgsing of several 0-forms by (−1)-forms [44–46], such that a single 0-form

with large f survives. Similarly, several 1-forms can be Higgsed by 0-forms to challenge the WGC for vector

fields [47]. Thus, establishing the original proposal of [10] would be important to evaluate how much trust

one can put in the subsequent more general claim of [47].
2Shift-symmetric complex-structure moduli have been considered in the context of inflation before, e.g.,

as complex-structure moduli of 4-folds or D7-brane moduli [52–58] as well as in the 3-fold case [59, 60].
3See, however, [50, 51] for a critical discussion of large field ranges in type IIB models at the conifold

point. For very recent optimistic analyses in a rather different approach see [62, 63].
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Figure 1. Aligned winding (left) and misaligned winding (right) in a two-dimensional axion field

space. The blue arrow corresponds to the light axion direction χ, while the axes represent the

two fundamental axions a1 and a2. The light axion is either almost aligned with a fundamental

axion or with the diagonal, where the angle is controlled by the parameter 1/N such that perfect

(mis-)alignment corresponds to N →∞.

We first study the simplest case of an aligned winding trajectory with two fundamental

axions (cf. the left-hand side of figure 1). We find a general no-go theorem for this scenario,

stating that parametrically large field ranges are ruled out on any Calabi-Yau orientifold.

We then propose several variants of the winding idea which allow to avoid the no-go theorem

and may thus lead to large field ranges. First, we study ‘misaligned winding’, where we

consider a light axion direction aligned with a diagonal of the axion field space rather than

one of its axes (cf. the right-hand side of figure 1). Second, we consider constructions

with a finely tuned superpotential. Third, we consider aligned winding of three or more

fundamental axions. We also analyse the prospects for aligned or misaligned winding in the

concrete setting of the large-complex-structure (LCS) limit, where the F -term constraints

are simple enough to be solved in complete generality. Interestingly, we find that the

problem of constructing long winding trajectories in this setting can be reduced to a purely

geometric condition involving the triple intersection numbers of the Calabi-Yau.

The paper is organised as follows. In section 2, we expand on the relation between axion

field distances and the WGC and discuss the mechanisms of aligned and misaligned winding.

We furthermore discuss winding in the context of a simple type IIA compactification and

discuss some problems that occur in this model. In section 3, we study axion field ranges in

the complex-structure sector of type IIB Calabi-Yau compactifications. We first establish

a no-go theorem for aligned winding with two axions and then study several approaches

that avoid this result. In section 4, we derive the low-energy EFT for the light axion

with parametrically large f . In particular, we discuss Kähler moduli stabilisation and

show that there is a regime where a hierarchy between all moduli masses and our large-f

effective axion potential is guaranteed. We furthermore discuss the challenges that arise

when promoting our scenario to a model of large-field inflation. We summarise our results

in section 5.

2 General idea

2.1 (Mis-)aligned winding and swampland conjectures

Motivated by understanding field distances for fields with potentials, we are naturally led

to looking at axions. This is because their potential is well-controlled due to a discrete
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shift symmetry. The axion version of the Weak Gravity Conjecture reads [3]

fS . q . (2.1)

Here, and henceforth, we set the Planck mass to unity, Mp = 1. Furthermore, f is the

axion decay constant, S is the action of the instanton satisfying the inequality and q is its

charge. The action for a canonically normalised axion is periodic under a shift 2πf . Let

us furthermore denote by 2πΠ the periodicity of the potential generated by the instanton.

We then have

Π =
f

q
. (2.2)

It is important to note that this can be different from the periodicity of the axion since it

is possible to have q � 1.

Depending on the instanton(s) satisfying (2.1), one can distinguish different versions of

the WGC. In particular, the Strong WGC [3] states that (2.1) is satisfied for the instanton

with the smallest action S. In the controlled instanton regime S & 1, (2.1) implies f . q

and hence Π . 1. Therefore, if the Strong WGC holds, the axion potential is dominated by

an instanton contribution with sub-Planckian periodicity, ruling out, e.g., large-field infla-

tion.4 Conversely, an axion with a parametrically large monotonic region in the potential

parametrically violates the Strong WGC. Note, however, that the Strong WGC does not

impose any restriction on f , and hence, for large enough q, the axion field range can still

be super-Planckian.

This is to be contrasted with the Smallest Charge WGC [3], which states that (2.1) is

satisfied for an instanton with q = 1. In the regime S & 1, this implies f . 1 and hence a

small field range. The Smallest Charge WGC is thus much more restrictive than the Strong

WGC.5 A variant of the Smallest Charge WGC is the (Sub-)Lattice WGC [21, 65], where

an instanton satisfying (2.1) exists for every site on the charge lattice or, more generally, on

a sub-lattice with coarseness qc ≥ 1.6 While an apparent counter-example [3] to the case

qc = 1 was later shown to be incorrect [20], there are more recent counter-examples which

indeed violate the Smallest Charge/Lattice WGC for qc = 1 [21, 65]. We stress, however,

that it is an open problem whether the Sub-Lattice WGC is true for sub-lattices with qc > 1

(but still O(1)). As we will see below, our type IIB constructions in section 3 correspond to

a parametric violation of this statement, i.e., to sub-lattices with parametrically large qc.

We will furthermore argue in section 3 that it may be possible to construct axion potentials

with large monotonic regions in our type IIB setting. According to our above discussion,

this would correspond to a parametric violation of the Strong WGC.

Let us be precise and qualify the statements of the last paragraph: while the long-term

goal is to make such statements in string theory, the present paper achieves this only in

4This is true modulo the small-action loophole pointed out in [13] (see also [64]).
5Another reason why, despite its name, the Strong WGC is less strong than the Smallest Charge WGC is

that its 1-form version does not have any implications for the spectrum of the low-energy EFT. In particular,

if only the Strong WGC holds, the inequality m . qg [3] can be satisfied by states with arbitrarily large

charges and, hence, arbitrarily large masses.
6See also the less restrictive Tower WGC [66], where the WGC is also satisfied by a large number of

states but they do not necessarily occupy a sub-lattice in charge space.
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string-motivated effective field theories. Indeed, so far we have not been able to find a

fully explicit string compactification realising our constructions on a concrete manifold.

Thus, given what we currently know, the long-term results could go either way: our string-

inspired models of (mis-)aligned winding could be realised, proving certain strong forms of

the WGC wrong, or they are right and our constructions cannot be realised for reasons to

be understood.

We would like to test axion field distances and the related versions of the WGC directly

in string theory. We are therefore interested in setups which lead to f � 1. The most

reliable settings utilise constructions with two or more axions, in the spirit of [9] (see

also [67, 68]). The idea is to give all but one combination of them a large mass and

study the remaining light direction in the resulting effective theory. The key property of

a setup with several axions is the possibility of winding trajectories for the light direction

by turning on fluxes [10]. In the simple case of two axions, this winding can be achieved

by considering a superpotential of the form

W = w(Z) + f(Z)(n1 U1 + n2 U2) . (2.3)

Here, n1, n2 ∈ Z are fluxes and U1, U2 correspond to two distinguished complex-structure

moduli. The remaining moduli are denoted by Z. The axions, a1 and a2, are the real

parts of the Ui, while the saxions, u1 and u2, are the imaginary parts: Ui = ai + iui.

The associated decay constants are denoted by f1 and f2, where we assume f1, f2 . 1.

The axions have associated instantons with actions S1 = u1, S2 = u2. Assuming that the

instantons are unit-charged, we furthermore have Π1 = f1 and Π2 = f2.

The combination of axions which obtains a large mass from (2.3) is n1a1 + n2a2. We

are interested in the effective theory of the surviving light axion combination. To quantify

the effective field range, it is useful to introduce the co-prime parts of n1 and n2, so we write

n1 = p p1 , n2 = p p2 , for largest p ∈ Z such that p1, p2 ∈ Z . (2.4)

The potential is invariant under any axion shift (∆a1,∆a2) orthogonal to (p1, p2). Hence,

we can parametrise the flat direction by some field χ as(
a1

a2

)
=

(
−p2

p1

)
χ . (2.5)

Here, without loss of generality, we redefined the fundamental axions a1, a2 such that the

line parametrised by χ goes through (0, 0). The vector on the right-hand side is the smallest

integer vector pointing along the flat direction so that χ is 2π-periodic. The canonically

normalised field obtained from χ will be denoted by ψ. At leading order in the mass ratios

of the heavy and light axion combinations, we can extract the effective decay constant for

the light direction ψ by treating the massive axion as constant in the kinetic terms. In the

absence of kinetic mixing between a1 and a2, we then find

L = f2
1 (∂a1)2 + f2

2 (∂a2)2 +A e−S1 cos(a1) +B e−S2 cos(a2)

'
(
p2

2f
2
1 + p2

1f
2
2

)
(∂χ)2 +A e−S1 cos (p2 χ) +B e−S2 cos (p1 χ)

≡ (∂ψ)2 +A e−S1 cos

(
ψ

Π1

)
+B e−S2 cos

(
ψ

Π2

)
. (2.6)
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Note that, in the first line, we only displayed the instanton-generated part of the potential

for a1, a2 and assumed for simplicity that there are no relative phases in the arguments of

the cosines. The periodicities of ψ in the two instantons, associated to a1 and a2, are

Π1 =
f

p2
, Π2 =

f

p1
, (2.7)

where

f =
(
p2

1f
2
2 + p2

2f
2
1

) 1
2 . (2.8)

The field range is determined by the periodicity of the full action. This is equivalent to

the periodicity under the two instanton terms appearing in (2.6), i.e., both terms must be

periodic under a single axion shift. Since p1 and p2 are co-prime, the periodicity of ψ is

then f , and this sets the field range. Comparing with (2.2), we also see that the associated

charges of the instantons are p1 and p2.

We can now distinguish, within this setting, two scenarios for obtaining a large field

range for ψ. First, we consider aligned winding, i.e.,

p1 ∼ O (1) , p2 ∼ O (N) , (2.9)

for some N � 1. This is illustrated as the first case in figure 1. According to (2.7) and (2.8),

it allows for f � 1 as well as Π2 � 1. The second condition may admit large monotonic

regions in the potential and possibly even inflation. For this reason, the alignment scenario

was originally proposed in [9]. As dicussed above, this implies a parametric violation of

the Smallest Charge WGC and the Strong WGC. If the latter holds, the sub-Planckian

instanton, with periodicity Π1, dominates the super-Planckian one (i.e., S2 > S1) such that

the monotonic regions in the potential are small.

The other scenario we consider is misaligned winding where we take

p1 ∼ O (N) , p2 ∼ O (N) (2.10)

with p1 6= p2. This is illustrated as the second case in figure 1. Here, it is manifest that

the periodicities in the instantons are not parametrically large (cf. (2.7) and (2.8)), and

so it would not be useful for inflation. However, the axion field range f is parametrically

enhanced such that we still have f � 1. We will exploit both aligned and misaligned

winding to realise large field ranges in type IIB string theory.7

Let us see how misaligned winding fits into the framework of the WGC. We assume that

there are two instantons associated to a1 and a2 which satisfy the WGC, i.e., Sifi . 1. For

simplicity, we furthermore take f1 = f2 and p1 ∼ p2 ∼ N . It then follows with (2.8) that

fSi . N , (2.11)

i.e., the WGC is satisfied by instantons with parametrically large charges under the light

axion ψ. To consider the low-charge instantons, we would need to take instantons wrapping

7More generally, one could also consider flux choices such as p1 ∼ O(N), p2 ∼ O(N2), which share some

of the features of both aligned and misaligned winding. In particular, the present example allows Π2 � 1

as in aligned winding and yields f � Π1,Π2 as in misaligned winding. We will not consider such flux

configurations in the remainder of this paper as the cases (2.9) and (2.10) are sufficient for the points we

wish to make.
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cycles in a homology class which is a linear combination of the homology classes of the

‘fundamental’ cycles associated to u1 and u2. But the instantons we considered are the

lightest leading instantons, and so the instantons with lower charges have a larger action.

For f ∼ O(N), they will therefore not satisfy the WGC inequality. The setup therefore

amounts to a parametric violation of the Smallest Charge WGC [3]. Within the context

of the Sub-Lattice WGC [21, 65], it amounts to a sub-lattice with parametrically large

coarseness, as discussed above.

Let us finally address the Swampland Distance Conjecture. Its refined form states that

a tower of states with exponentially light masses m ∼ e−c∆φ (with c = O(1) and positive)

should appear at superplanckian field displacement, i.e., at ∆φ & 1. In the standard

examples, φ is some modulus (saxion) and the light states are either KK modes or wrapped

branes. This explains the exponential lightness as certain cycle volumes become large or

small with changing φ. By contrast, in our case φ is replaced by our (effective) complex-

structure axion χ. This field is a linear combination of the real parts of complex-structure

moduli Re(Ui) and appears with a continuous shift symmetry at leading order, i.e., with a

flat potential. When χ changes, we see no reason for any cycle to become large or small.

Indeed, cycle volumes are governed by the Kähler moduli together with the imaginary

parts of the complex-structure moduli. The latter determine the ratios of T 3 radii and

basis-cycles in the Strominger-Yau-Zaslov fibration picture of a Calabi Yau [69]. Thus,

we reiterate, the tower of the lightest states does not change with χ at leading order. At

sub-leading order, the inclusion of non-perturbative terms ∼ e−Im(Ui) breaks the symmetry

to discrete shifts. Now the change of χ does affect saxion vevs through backreaction (see

section 4). But this indirect effect, induced by the potential of χ, is exponentially small.

Therefore, to the best of our present understanding, no towers of light states appear as we

move along the flat axion potential. Hence the above construction, if realisable in string

theory, would provide a counter-example to the refined SDC.

2.2 A type IIA example

We now consider the winding scenario in AdS solutions of type IIA string theory compact-

ified on a Calabi-Yau orientifold [70].8 The aim is to review the construction in an explicit

string-theory example but also to discuss some problems in type IIA which we believe are

not present in the type IIB models we will study in sections 3 and 4. We will use the conven-

tions of [77] and focus on the specific example of the mirror-dual of CP4
(1,1,2,2,6)[12], which

was analysed in [61] and illustrates the relevant points. The effective four-dimensional

N = 1 supergravity is specified by the following Kähler potential and superpotential:

K = −2log

[
√
su1

(
u2 −

2

3
u1

)]
+KT

(
TA − T̄A

)
, (2.12)

W = −n0S − n1U1 − n2U2 +WT

(
TA
)

+A0

(
TA
)

eiS

+A1

(
TA
)

eiU1 +A2

(
TA
)

eiU2 . (2.13)

8These solutions are only known in the smeared limit, i.e., they do not take into account the local

backreaction of the O6-planes. We will proceed with the assumption that this does not modify the results

significantly (see, e.g., [71–76] for discussions of the smearing issue).

– 7 –



J
H
E
P
0
3
(
2
0
1
9
)
1
9
2

Here, we introduced the complex-structure moduli S = σ+is, U1 = a1 +iu1, U2 = a2 +iu2.

The Kähler moduli TA have the Kähler potential

KT
(
TA − T̄A

)
= − log

(
i

6
kABC(TA − T̄A)(TB − T̄B)(TC − T̄C)

)
(2.14)

and superpotential

WT (TA) =
f0

6
kABCT

ATBTC +
1

2
kABC f̃

ATBTC + fAT
A + f̃0 , (2.15)

where f0, f̃A, fA and f̃0 are quantised RR fluxes, see, e.g., [78]. We will ignore the

stabilisation of the Kähler sector for the moment and come back to this point further below.

The terms linear in the complex-structure moduli in (2.13) are induced by NSNS fluxes,

while the exponential terms are instanton-induced. Although we have written instanton

contributions for the moduli S, U1 and U2 in (2.13), the question of whether those con-

tributions are present is a difficult one, cf. [79] for a review. We will proceed with the

assumption that they all contribute but will keep in mind that this may not be the case

for specific examples.

Perturbatively, all saxions and one combination of the 3 axions σ, a1 and a2 are fixed.9

Non-perturbatively, all the axions gain a mass, but these masses can be exponentially

different according to how the saxions s, u1 and u2 are fixed. In the vacuum, we have

that [61]

s

u1
=

3n1 + 2n2

3n0
,

s

u2
=
n2 (3n1 + 2n2)

6n0 (n1 + n2)
,

u1

u2
=

n2

2 (n1 + n2)
. (2.16)

We now consider a setting where n0 & n1, n2. This implies that s . u1, u2. Of the three

axions we therefore have two heavy combinations: σ and n0σ+n1a1 +n2a2. The remaining

(exponentially) light axion is orthogonal to both of these combinations. Since the metric

on the field space factorises between σ and the ai, this light direction is purely in the a1

and a2 space and orthogonal to n1a1 + n2a2.

We therefore arrive at a situation similar to the two-axion toy model in the previous

section. The periodicities of the two instantons associated to u1 and u2 can be written as

Π1 =
f

p2
, Π2 =

f

p1
, f =

√
3

8

p2

u1
=

√
3

2

p1 + p2

u2
. (2.17)

Here, as earlier, the pi are the co-prime factors in the ni. We can now utilise this example

to illustrate both aligned and misaligned winding. We see that aligned winding is realised

for the choice

p1 ∼ O (1) , p2 ∼ O (N) =⇒ Π1 ∼
1

u1
, Π2 ∼ f ∼

N

u1
(2.18)

for N � 1, while, for misaligned winding, we have

p1 ∼ O (N) , p2 ∼ O (N) =⇒ Π1 ∼ Π2 ∼
1

u1
, f ∼ N

u1
. (2.19)

9The stabilisation scheme in this example is therefore slightly different from the rest of this paper where

we always stabilise all but one axion combination by fluxes.
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Note that, due to the requirement of tadpole cancellation, N is bounded by the number of

O6-planes and can therefore not be made arbitrarily large.

It appears from the above discussion that, assuming the ui are not too large, we can

use winding to construct super-Planckian field ranges in this model. However, there are in

fact several problems:

• The example of aligned winding may at first appear to have parametrically large

monotonic regions in the potential, associated to Π2. However, it was observed in [61]

that (2.16) implies u2 ≈ 2u1 for large N and therefore the dominant instanton is the

one associated to Π1, which is not enhanced. This makes the above setup unsuitable

for inflation (but does a priori not exclude that the model is still an example with

parametrically large f).

• A second, previously unnoticed problem is the backreaction of the Kähler moduli. In

particular, in a controlled regime, they backreact on the vevs of the ui in such a way

that the parametric enhancement of f is cancelled. This can be seen by noting that

the energy densities in the 10d action have to be small in string units 2π
√
α′ = 1, i.e.,

|H3|2 . 1 , e2φ|Fp|2 . 1 , (2.20)

where eφ = gs is the 10d dilaton and the contractions are with the string-frame

metric. This ensures that higher-derivative corrections to the effective action are

suppressed.10 Consider now in particular the bound on the Romans mass, e2φF 2
0 . 1.

In terms of the 4d moduli, this becomes

V
√
su1

(
u2 −

2

3
u1

)−1

f2
0 . 1 , (2.21)

where V is the string-frame volume and f0 = F0 in string units. This can be shown

to follow from the usual definition of the complex-structure and Kähler moduli in

type IIA [70, 78]. Solving the F -term constraints for s and ui, we furthermore find,

at leading order in N ,

s ∼ f0V
n0

, ui ∼
f0V
N

, (2.22)

where we used that W ∼ ImWT ∼ f0V [70]. Using (2.22) in (2.21), we arrive at

the condition

V & N2 . (2.23)

Replacing V in (2.22) by (2.23), we find

ui & f0N . (2.24)

According to (2.18), (2.19), the effective axion decay constant for (mis-)aligned wind-

ing trajectories is f ∼ N
u1

. Since f0 is an integer, it follows that

f . 1 , (2.25)

and therefore the field range is necessarily small in the controlled regime.

10The dilaton factor in the second inequality is due to the usual definition of the RR fields with an extra

power of gs (see, e.g., [70]).
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• We also stress that, in type IIA models, our light-axion EFT always lives in deep

AdS space. This may sound surprising since, in the limit of large F4 flux, the AdS

curvature is small compared to the KK scale [70]. We therefore have a genuinely four-

dimensional low-energy EFT for all moduli in an approximate flat regime. However,

one can also check that the AdS scale is always of the order of the saxion masses.11

To be able to integrate out the saxions, one needs to go to a lower scale into the deep

AdS regime. It is therefore not possible to take a limit where a large-f axion lives in

approximate Minkowski space.

It is not clear to us whether there could be other type IIA models in which some or all

of these issues are ameliorated. Also note that we assumed above that n0 & n1, n2 in order

to arrive at an EFT for a single light axion, cf. the discussion below (2.16). One can show

that, without this assumption, the bound (2.25) is slightly relaxed to f .
√
N/
√
n0. This is

still smaller than the naive scaling f ∼ N but may at least allow a moderate enhancement

f ∼
√
N for small enough n0. In order to verify this, one would have to study in more

detail the EFT for the 2 axions orthogonal to the heavy combination n0σ + n1a1 + n2a2.

Notice further that the axions a1, a2 arising from the RR 3-form do not suffer from

loop corrections in type IIA. We emphasise this point because, as we will later see, loop

corrections to the axion potential are a limiting factor in related type IIB models.

Nevertheless, we consider it more promising to study aligned and misaligned winding

in type IIB string theory instead. As usual in type IIB, the stabilisation of the complex-

structure moduli is approximately independent of the Kähler moduli due to a no-scale

structure at tree-level, with only small corrections at sufficiently large volumes. The back-

reaction problem described above is therefore not expected to occur in such models. Indeed,

we will discuss several candidate constructions in section 3 which plausibly realise large

field ranges using the winding idea. We will also see in section 4 that, for sufficiently

small gs, the AdS scale is small compared to the moduli mass scale such that we have an

approximate Minkowski situation.

3 (Mis-)aligned winding in type IIB string theory

We now turn to type IIB compactifications, focusing again on complex-structure moduli

and winding trajectories as discussed in [10]. The simplest setting is that of an effective-

axion trajectory which is aligned with one axis in a two-axion plane. We find obstructions

to realising large f in this basic setting. Next, we suggest and analyse three loopholes:

the first is based on misaligned winding as defined in section 2.1. The second uses a finely

tuned superpotential. The third relies on mixing between three axions. Finally, we attempt

to make generic statements in a situation with any number of axions and a superpotential

which is independent of one linear combination of these fields.

3.1 A no-go theorem for aligned winding with two axions

As described in [10], winding can be achieved with a flux-induced superpotential [80] of

the form (2.3),

W = w(Z) + f(Z)(n1 U1 + n2 U2) . (3.1)

11Depending on the compactification, some of the saxions and/or axions can be tachyonic, with masses

above the Breitenlohner-Freedman bound [70].

– 10 –



J
H
E
P
0
3
(
2
0
1
9
)
1
9
2

Here, U1 = a1 + iu1 and U2 = a2 + iu2 are two distinguished complex-structure moduli.

The remaining complex-structure moduli and the axio-dilaton are collectively denoted by

the variable or set of variables Z. Without loss of generality, we assume that the fluxes

n1, n2 are co-prime. Kähler moduli stabilisation will be ignored for the moment — it is

discussed in section 4.

It is essential that we assume the moduli U1, U2 to be stabilised at large complex

structure (LCS), such that u1, u2 � 1. As a result, terms in the periods of the CY which

involve factors eiU1 and eiU2 can be ignored. This justifies the ansatz (3.1). We are agnostic

about the moduli Z — they may or may not be at LCS. We will assume, however, that

their values are such that the Kähler potential is still well-approximated by its leading

term in the LCS expansion. For example, we want to avoid situations where terms like

i(Ui − U i)(Uj − U j)(Z − Z) . 1 because we tuned Z to achieve |Z − Z| � 1.

With these assumptions, the complex-structure sector of the Kähler potential

K ⊃ − log
[
A(Z, Z̄, U1 − Ū1, U2 − Ū2)

]
(3.2)

is shift-symmetric in a1 = Re(U1) and a2 = Re(U2). These are our axion candidates. More

explicitly, the function A has the structure [81, 82]

A(Z, Z̄, U1 − Ū1, U2 − Ū2) = A3(Z − Z̄, U1 − Ū1, U2 − Ū2) + ic+ g(Z, Z̄) , (3.3)

which is best explained in the language of the mirror-dual 3-fold. In this language, Z

and Ui are 2-cycle-related Kähler moduli and g(Z, Z̄) encodes worldsheet instanton effects

∼ exp(iZ). The perturbative (in the dual language) term, which dominates at LCS or

large dual volume, is given by the cubic polynomial

A3(Z − Z̄, U1 − Ū1, U2 − Ū2) =
i

3!
κijk(Y

i − Ȳ i)(Y j − Ȳ j)(Y k − Ȳ k) . (3.4)

Here, Y denotes both Z- and U -moduli. The κijk are dual intersection numbers and

c = −iζ(3)χ(X3)/(4π3) with χ(X3) the Euler characteristic of the Calabi-Yau threefold X3.

We now make a choice which is important for the following discussion: in the dual

language, Y i are components of the Kähler form in a certain basis. We choose this basis to

be a basis of the Kähler cone. As a result, the triple intersection numbers are non-negative

integers, κijk ≥ 0, see, e.g., [83, 84].

The key point for the winding idea is that the superpotential (3.1) is independent of a

certain linear combination of U1 and U2. Hence, the F -term conditions

DU1W = n1 f(Z) +KU1W = 0 , DU2W = n2 f(Z) +KU2W = 0 (3.5)

leave a flat direction on the a1-a2 field space. For W 6= 0, these conditions can be rewrit-

ten as

KU1

KU2

=
n1

n2
, (3.6)

f(Z) +
KU1

n1
W = 0 . (3.7)
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The first equation corresponds to fixing the relative volume of two (dual) 4-cycles. Their

overall volume is fixed by (3.7). This second equation also stabilises one linear combination

of a1 and a2.

The plan is now to investigate properties of the field range f of the surviving effective

axion in the a1-a2-plane. This proceeds by analogy to the derivation of (2.8). First, recall

the relevant kinetic terms,

L ⊃ KU1Ū1
| ∂U1|2 +KU1Ū2

(∂U1)(∂Ū2) + h.c.+KU2Ū2
| ∂U2|2 . (3.8)

Next, introduce the effective axion χ through (a1, a2) ≡ (−n2, n1)χ, cf. (2.5). The decay

constant of χ then reads

f2 = n2
2KU1Ū1

− 2n1n2KU1Ū2
+ n2

1KU2Ū2
. (3.9)

To analyse this result, it will be convenient to think in terms of derivatives with respect

to the real variables u1 and u2. For example, we have 4KU1Ū2
= ∂u1 ∂u2K and 4KU2KŪ2

=

(∂u2K)2. To simplify notation, we will furthermore write 2K2 ≡ ∂u2K, 4K12 ≡ ∂u1 ∂u2K
etc.12 With this, we have for example

K11 = K1K1 −
A11

A
=
n2

1

n2
2

K2K2 −
A11

A
, (3.10)

where we used (3.6) in the second equality. Similar expressions can be given for K12 and

K22. As a result, (3.9) simplifies to

f2 = −n2
2

A11

A
+ 2n1n2

A12

A
− n2

1

A22

A
. (3.11)

Note that, while not apparent in this form, f2 continues to be positive definite. In other

words, in any consistent model, the various quantities on the right-hand side of (3.11) will

always take values which ensure positivity.

We would like to understand the properties of (3.11) in case of aligned or misaligned

trajectories. Let us first consider the case of a small ratio in (3.6). We choose fluxes

(n1, n2)→ (1, N) with N � 1 corresponding to the setup investigated in [10]. Note that N

has to be positive because of (3.6) and KU1/KU2 > 0. In this case, since only a1 +N a2 is

stabilised, we obtain a winding trajectory closely aligned with a1, hence the name aligned

trajectory. The range of the U1-axion is N -fold extended in this way. By (3.4), the function

A is just a cubic polynomial in the imaginary parts of the Ui with positive coefficients.

Hence, its second derivatives are non-negative: A11,A12,A22 ≥ 0. Since A > 0, the first

and last term in (3.11) contribute negatively. Thus, we estimate

f2 ≤ 2N
A12

A
. (3.12)

We claim that this bound implies f2 � 1.

12Beware of the factor of i appearing in the relation between, e.g., K1 and KU1 .
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To demonstrate this, rewrite the inequality as

f2 ≤ 2N
u2A2

A
A12

u2A2
= 2N

u2A2

A
A12

u2NA1
, (3.13)

where we used (3.6) in the second step. Indeed, let us define the ratios

E2 :=
A

u2A2
, E12 :=

A1

u2A12
. (3.14)

In terms of E2 and E12, eq. (3.13) becomes

f2 ≤ 2

u2
2

1

E2E12
. (3.15)

It is clear that, whenever A is dominated by the perturbative term (3.4), we have u2A2 ≤
O(1)A. The reason is simple: if all terms in A involve u2, then u2A2 ∼ A ignoring O(1)

factors. But A may involve terms without u2. These are annihilated when taking the

derivative, thus making u2A2 generically smaller. Therefore, the ratio E2 cannot become

parametrically small: E2 & 1. This also holds for E12 so that E12 & 1. Since u2 � 1

in the LCS limit, we deduce that f2 � 1. We formulate our observations in terms of a

no-go theorem:

No-go theorem for aligned winding trajectories with two moduli: consider a IIB

flux compactification on a Calabi-Yau orientifold. Let two complex-structure moduli U1, U2

be at LCS with all others such that the perturbative terms in the Kähler potential dominate.

If the superpotential W only depends on U1, U2 through the linear combination13 U1 +N U2

with N � 1, then the field range of the remaining flat axionic direction cannot become

parametrically large.14

To understand this result intuitively, rewrite the F -term conditions (3.5) as

f(Z) N− i∇KW = 0 , (3.16)

with

N =

(
n1

n2

)
, ∇K =

(
K1

K2

)
. (3.17)

Furthermore, recall that we parametrise the light axion direction by χ as in section 2.1 (see

comment after (3.8)) and define a vector pointing into this direction,

x =
dRe(U)

dχ
, U =

(
U1

U2

)
. (3.18)

Our intuitive argument is based on the arrangement of the three vectors N, ∇K and x:

on the one hand, ∇K lives in the tangent space of the saxionic field space, with basis

13Note that the no-go theorem does not rely on the specific form of the superpotential in eq. (3.1) but

holds more generally for any W =W(U1 +NU2, Z).
14This no-go result does not apply to the toroidal examples of [42], which studied large field ranges in

the regime ui . 1. Due to the absence of instantons on the torus, this does not imply a loss of control.
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da2

da1
x

∼ N
∂/∂u2

∂/∂u1

,

,
−

Figure 2. Light axion direction (aligned with a1 axis) vs. flux vector N and Kähler potential

gradient ∇K (aligned with orthogonal axis).

(∂/∂u1, ∂/∂u2). The vector N is parallel to ∇K due to (3.16) and can be plotted in the

same space, cf. figure 2. On the other hand, x lives in the cotangent space of the axionic

field space, with basis (da1, da2). It will be convenient to identify these two vector spaces

using the above bases. In other words, we draw all vectors in a single space, see again

figure 2. Orthogonality between two vectors from these two spaces becomes Euclidean

orthogonality.

Now, the superpotential (3.1) forces the flat axionic direction to satisfy

n1da1 + n2da2 = 0. In other words, the flat direction is orthogonal to the flux vector N:

N · x = 0 . (3.19)

Furthermore, ∇K ∼ N, such that the direction of ∇K is fully determined by the light axion

direction. In particular, aligning the light axion with the a1-axis implies that ∇K is aligned

with the a2-axis, see figure 2. Because of ∇K = (K1,K2) ∼ (A1,A2), this implies a large

hierarchy |A1| � |A2|, which with (3.4) translates into a hierarchy between (combinations

of) saxion vevs. This hierarchy makes f small.

To summarise, as we align χ with one of the fundamental axions, we are constrained to

a special region in moduli space with a large hierarchy between the components of ∇K. In

that region, also the second-derivative matrix of K is non-generic and, as shown by our no-

go theorem, it counteracts the naive field-range extension due to N � 1. In the following,

we will discuss possibilities to extend the field range by fluxes without being forced in such

a special corner of moduli space (i.e., without the imposition of large hierarchies on the

components of ∇K). In this context, the geometric point of view introduced here will be

very useful.

3.2 Misaligned winding

The winding trajectory discussed in the previous subsection was closely aligned with the

a1-axis. As discussed in section 2.1, we can also think of different kinds of alignment,

for example, with the diagonal direction da1 − da2 (cf. figure 3). In this sense, the flat

– 14 –



J
H
E
P
0
3
(
2
0
1
9
)
1
9
2

da2

da1

∂/∂u2

∂/∂u1

,

,

∼ N

x−

Figure 3. Misaligned trajectory, labelled by x, in two-moduli space. In this case, the vector ∇K
is not aligned with any of the coordinate axes.

direction is misaligned with the original axions a1, a2. This can be achieved by the flux

choice (n1, n2) = (N,N + 1) with N � 1. The F -term constraint (3.6) then becomes

KU1

KU2

=
AU1

AU2

=
N

N + 1
∼ O(1) . (3.20)

Contrary to the alignment scenario, this does not impose a large hierarchy between mod-

uli vevs. Repeating the steps after (3.11) for the flux choice (n1, n2) = (N,N + 1), we

furthermore find that the bound on the axion decay constant is relaxed,

f2 ≤ 2N(N + 1)
A12

A
=

2

u2
2

N2

E2E12
. (3.21)

The key point here is the enhancement factor N2 relative to the aligned case of (3.15).

This evades the no-go theorem.

As in the aligned case, a roughly N -fold enhancement of the axion periodicity arises

from the winding around the torus of the original field space. However, in contrast to the

aligned case, this enhancement is not counteracted by a hierarchy between moduli vevs

and, hence, between Ai and Aij factors.

The corresponding geometry is illustrated in figure 3: as x is aligned with one diagonal

in the axion field space, ∇K ∼ N must be aligned with the opposite diagonal in the saxionic

tangent space (cf. (3.19)). Thus, we immediately see that there is no hierarchy between

the components of ∇K. As explained above, we believe that this is the underlying reason

allowing for long trajectories.

3.3 Fine-tuned superpotential

Our no-go theorem of section 3.1 excludes aligned trans-Planckian trajectories in two-

axion models. A key assumption in its derivation was the use of a purely perturbative (in

the mirror-dual language) Kähler and superpotential with respect to the moduli U1 and
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U2. Thus, a natural way out might be to generalise our superpotential (3.1) by including

instanton terms:

W = w(Z) + f(Z)(n1 U1 + n2 U2) +A1(Z)eiU1 +A2(Z)eiU2 . (3.22)

The F -term constraints (3.6), (3.7) become

KU1

KU2

=
n1 f(Z) + iA1(Z)eiU1

n2 f(Z) + iA2(Z)eiU2
, (3.23)

f(Z) = −iA1(Z)eiU1

n1
− KU1

n1
W . (3.24)

As in section 3.1, we choose (n1, n2) = (1, N) with N � 1 and assume u1, u2 � 1. The idea

is now to tune the function f(Z) to be very small, such that the exponentially suppressed

instanton terms in (3.23) can compete with it. By (3.24), W and hence w(Z) will then

also be small. Thus, in spite of the hierarchy between n1 and n2, we can hope to arrange

KU1/KU2 ∼ O(1). As argued above, a large hierarchy between the components of ∇K was

the key issue underlying our no-go result. This suggests that large field ranges can be

realised in models with a fine-tuned superpotential.

A possible objection to this construction is that the key superpotential term f(Z)(U1 +

NU2), which is responsible for stabilising the axion combination a1 +Na2, is tuned small.

One might be concerned that the hierarchy between this stabilised field and the light axion

χ will be lifted due to the tuning of f(Z). Clearly, this would go against the spirit of the

whole approach. However, we do not expect this to be a problem in general. Indeed, let

us assume for notational simplicity that Z stands for just one modulus and consider the

corresponding F -term contribution to the scalar potential:

|DZW|2 = |∂Zf(Z)|2 |U1 +NU2|2 + ∂Zf(Z)(U1 +NU2)KZZ̄∂Z̄w̄(Z̄) + c.c.+ . . . , (3.25)

where we dismissed exponentially small terms and terms that do not depend on U1 +NU2.

In order that the flux-induced mass generated for a1 + Na2 does not become small, it is

mandatory that the tuning for |f | � 1 does not imply |∂Zf | � 1. While we cannot exclude

obstructions due to the F -term constraints for the Z-moduli, generic flux choices do not

imply |∂Zf | � 1: for example, if f(Z) ≡ Z becomes small because we are stabilised near

the locus Z = 0 in moduli space, ∂Zf continues to be unity.

Another potential worry is that it may not be possible to arrange both u1, u2 � 1

and f(Z)� 1 in a given compactification. In particular, one might be concerned that the

F -term constraints for the Z-moduli restrict the allowed on-shell values of w(Z) and/or

f(Z) such that (3.24) cannot be solved with u1, u2 � 1. Indeed, this turns out to be the

case in simple models (e.g., on the torus). However, we see a priori no reason why this

should be a general issue. In particular, in compactifications with several Z-moduli, we

expect to have enough tuning freedom to realise the above conditions.

To make this point clearer, we want to review the fine-tuning cost of the presented

construction. As before, we are dealing with a flux superpotential W(Z,U1, U2) with

Z = {Z1, · · · , Zn}. We have to make a flux choice ensuring the particular structure W ⊃
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f(Z)(U1+NU2). The remaining flux choice is used, as is standard in the type IIB landscape

framework, to place ourselves at a particular locus in complex-structure moduli space.

The well-known underlying idea is that, via the solution of the F -term equations, the

flux discretuum is mapped to an (in general rather dense) discretuum of points in moduli

space (see, e.g., [85]). In this discretuum, we have to choose a point with u1, u2 � 1 and

|f(Z)| � 1. Only the last tuning is special to the present subsection. The smallness of W
and of w(Z) follows from the F -term equation (3.24) and the definition of w in (3.22) and

requires no further tuning.

3.4 Generalisation to three axions

So far, we have formulated a no-go theorem for aligned winding trajectories and discussed

two loopholes in scenarios where two axions mix. A third way of evading our no-go theorem

is to consider the mixing of more than two axions. Indeed, we find evidence that already

the mixing of three axions is sufficient to allow for long trajectories. As we will see, this is

nicely illustrated by our geometric picture developed earlier.

Consider the superpotential

W = w(Z) + f1(Z)(n1 U1 + n2 U2 + n3 U3) + f2(Z)(m1 U1 +m2 U2 +m3 U3) (3.26)

as a simple generalisation of (3.1). The Kähler potential is defined as in (3.2), (3.3)

with the replacement A(Z, Z̄, U1 − Ū1, U2 − Ū2) → A(Z, Z̄, U1 − Ū1, U2 − Ū2, U3 − Ū3).

Our superpotential now only depends on two linear combinations of the three moduli

Ui = ai + iui. The Kähler potential involves just the imaginary parts ui. Thus, our setup

has one light axion, just as in the case with only two distinguished moduli U1 and U2.

The F -term conditions for the Ui read

DUiW = nif1 +mif2 +KUiW = 0 ∀ i = 1, 2, 3 . (3.27)

For W 6= 0, this fixes the ratios of Kähler potential derivatives according to

KUj

KUi

=
AUj

AUi

=
njf1 +mjf2

nif1 +mif2
∀ i, j = 1, 2, 3 . (3.28)

We need the kinetic term of the light axion obtained after integrating out the heavy axionic

combinations niai, miai as well as the saxions ui. As before, we parametrise the light

axionic direction by a field χ: a1

a2

a3

 =

 x1

x2

x3

χ or a = xχ . (3.29)

Here, x is the smallest integer vector orthogonal to the flux vectors N = (n1, n2, n3)T and

M = (m1,m2,m3)T . This ensures that the field χ is 2π-periodic. Explicitly, we have

x1 =
n3m2 − n2m3

x0
, x2 =

n1m3 − n3m1

x0
, x3 =

n2m1 − n1m2

x0
(3.30)
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da2

da1
x

∂/∂u2

∂/∂u1

,

,

da3 ∂/∂u3,
N

M

Figure 4. The light axionic direction x is aligned with the a1-axis. The hierarchy |A1| � |A2|, |A3|
is apparent since the plane spanned by the flux vectors is nearly parallel to the a2-a3-plane.

with

x0 = gcd (n3m2 − n2m3, n1m3 − n3m1, n2m1 − n1m2) . (3.31)

A calculation similar to that in section 3.1 determines the axion decay constant

f2 =
1

A

{
−2A31x1x3 − 2A32x2x3 − 2A12x1x2 −

3∑
k=1

Akkx2
k

}
. (3.32)

The periodicities with respect to each of the three fundamental instantons are

Π1 =
f

x1
, Π2 =

f

x2
, Π3 =

f

x3
. (3.33)

Again, we observe that the diagonal terms ∼ Akk always contribute negatively to f2.

Therefore, we estimate

f2 ≤ 2

A

{
−A31x1x3 −A32x2x3 −A12x1x2

}
. (3.34)

Of course, any physical configuration must lead to f2 > 0. As in the two-axion case, this

is not manifest in (3.32), (3.34) but is ensured by the consistency of the underlying model.

The key observation is now that, contrary to the two-axion case discussed in sec-

tion 3.1, it is not possible to derive a no-go theorem against large field trajectories using

the ratios (3.28). In particular, the no-go argument of section 3.1 involved using (3.6)

in (3.12) such that the flux dependence cancelled out in f2 and a bound f2 < 1 could

be obtained. One can convince oneself that an analogous argument cannot be made in

the three-axion case, i.e., trying to rewrite (3.34) using (3.28) cannot lead to a bound due

to the more complicated dependence on the fluxes ni, mi. We conclude that the aligned

winding scenario with three axions is less restrictive than the two-axion version such that

we may hope to realise large trajectories in models of this type.

Clearly, the failure of the old logic does not imply that things are actually better. To

gain more confidence, a simple, intuitive understanding of the advantages of the three-axion
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case over the two-axion case is needed. Such an understanding can indeed be gained using

the geometric interpretation of (mis-)aligned winding established earlier. We need to extend

this picture to the present scenario. To do so, rewrite the F -term constraints (3.27) as

N f1 + M f2 − i(∇K)W = 0 , (3.35)

where

N =

 n1

n2

n3

 , M =

m1

m2

m3

 , ∇K =

K1

K2

K3

 . (3.36)

We see that ∇K lies in the plane spanned by N and M:

∇K ∼ N f1 + M f2 . (3.37)

As stated above, the vector x satisfies

N · x = 0 , M · x = 0 , (3.38)

which means that x is orthogonal to the plane spanned by N and M.

First, consider the configuration in figure 4. Here, the light axionic direction is closely

aligned with the a1-axis. As a result, the plane of allowed values of ∇K is almost parallel to

the a2-a3-plane. This induces a hierarchy of the form |A1| � |A2|, |A3|. Such a hierarchy

again translates into a hierarchy of the different moduli involved. Consequently, we expect

an obstruction to large field ranges. Indeed, it is straightforward to see this, analogously to

the no-go argument of section 3.1: since x is aligned with the a1-axis, we have x1 large while

x2, x3 ∼ O(1). From∇K·x = 0, it follows
∑

iAixi = 0 and hence x1 = −(A2x2+A3x3)/A1.

Substituting this into (3.34) and using that the ratios Ai1/A1, Ai/A and A32/A are all

small, we then find f2 � 1 as previously. Aligning the light axion direction with one of

the ai-axes therefore does not lead to long trajectories.15

However, and this is the crucial punchline of this subsection, much more promising

geometries also exist. Indeed, consider the setup of figure 5, where x is nearly aligned with

the a1-a2-plane, but not with one of its axes. The plane of allowed values of ∇K is still

non-generic: it almost contains the a3-axis. However, this plane now contains vectors ∇K
which lie generically in the coordinate system — they do not need to be aligned with any

of the axes or planes. The freedom of choosing such a vector is in the coefficients f1 and

f2 in eq. (3.26). Thus, the ratios of the Ai can in principle all be O(1). We expect no

obstructions to realising large f .

Crucially, this last scenario falls in the category of aligned rather than misaligned

winding. In particular, if the moduli can be stabilised such that e−u1 , e−u2 � e−u3 then,

from the perspective of the axionic field χ, the instanton with the long period Π3 dominates

those with the short periods Π1 and Π2. As a result, a violation of the strong form of the

WGC appears possible. In order to use this for large-field inflation, additional constraints

need to be satisfied, which will be discussed in section 4.3. Note also that achieving this

15The same argument applies if one considers a mixing of more than three axions.
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da2

da1

∂/∂u2

∂/∂u1

,

,

da3 ∂/∂u3,

x

N

M

Figure 5. Illustration of a flux choice for which x is nearly aligned with a generic direction of the

a1-a2-plane. The plane of allowed values of ∇K is orthogonal to x and contains vectors without

any hierarchy between their components.

hierarchy between the instantons does not imply a related hierarchy between the saxion

values. Indeed, the exponentiation ensures that even an O(1) ratio between, say, u1 and

u3 is sufficient to completely suppress the former instantons.

3.5 General analysis at large complex structure

In the preceding subsections, we discussed several proposals to engineer long winding tra-

jectories in spite of the no-go theorem of section 3.1. The aim of the current subsection is to

test the winding scenario in a concrete setting where all F -term constraints can be solved

explicitly. In particular, we will study Calabi-Yau compactifications in the limit of large

complex structure, where the Kähler potential takes a rather simple form. We will admit

a completely general type IIB flux superpotential and allow mixing of an arbitrary num-

ber of axions. The goal is to determine the conditions under which aligned or misaligned

trajectories can arise in this setting.

Concretely, we consider compactifications with n = h2,1 complex-structure moduli Y i.

As before, we assume that the flux superpotential only depends on n−1 linear combinations

of them,

W =W(naiY
i, S) , (3.39)

where nai with a = 1, . . . , n − 1 are integer flux numbers and S is the axio-dilaton. The

Kähler potential is given by

K = −logA− log
[
−i(S − S̄)

]
+KT , A =

i

3!
κijk(Y

i − Ȳ i)(Y j − Ȳ j)(Y k − Ȳ k) . (3.40)

Here, KT denotes the part depending on the Kähler moduli, which need to be stabilised by

quantum effects (see section 4). It will be irrelevant for the current discussion, where we will

focus on the tree-level stabilisation of the complex-structure moduli and the axio-dilaton.
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In the large-complex-structure limit, K is shift-symmetric and satisfies a no-scale con-

dition (see, e.g., [78]). This implies the useful relations

Im(Y i) =
i

2
Ki , KiIm(Y i) =

3i

2
, KijIm(Y i) =

i

2
Kj , KijkIm(Y i) = iKjk . (3.41)

We also have

Kij = KiKj −
Aij
A

. (3.42)

Here and in the remainder of this section, it will be convenient to use the standard notation

where indices on K denote derivatives with respect to the complex fields, i.e., Ki ≡ ∂Y iK,

Kı̄ ≡ ∂Ȳ iK and analogously for W, A, etc.16 Note that, due to the shift symmetry, barred

indices on K, A can be replaced by unbarred ones using minus signs, e.g., Kı̄ = −Ki,
Ki̄ = −Kij , etc.

Let us parametrise the complex field direction along which W is constant by X, with

Re(X) = χ. This field direction is then given by Y i = xiX, where we define

xi =
dY i

dX
=

dReY i

dχ
(3.43)

as the smallest integer vector orthogonal to the vectors nai, in analogy to the previous

sections. Since W only depends on n − 1 combinations of the Y i and K only depends

on their imaginary parts, the F -term scalar potential generically leaves us with one light

axion χ.

Since W is independent of X by assumption, the F -term conditions

DXW = KXW = 0 (3.44)

imply, for W 6= 0, that KX = AX = 0 on-shell. The decay constant of the light axion χ

is therefore

f2 = KXX̄ = −AXX̄
A

= −Ai̄
A
xix̄ . (3.45)

Our goal is now to determine the conditions imposed on xi by the F -term constraints

in order to assess under which circumstances large field ranges are possible in this setting.

To this end, we consider the general type IIB flux superpotential [80, 86]

W = w(S) + fi(S)Y i + κijkg
i(S)Y jY k + h(S)κijkY

iY jY k + 3h(S)c (3.46)

with c ∼ iχ(X3) as in section 3.1 and

w(S) = w0 + w1S , fi(S) = f0i + f1iS , gi(S) = gi0 + gi1S , h(S) = h0 + h1S . (3.47)

Here, wα, fαi, g
i
α, hα with α = 0, 1 are numbers given by sums involving integer flux numbers

and classical intersections (see, e.g., (A.16) in [87]). For convenience, we will temporarily

16Note that this differs from our notation in the previous subsections, where indices denoted derivatives

with respect to real fields, cf. the comment below (3.9). These conventions differ by factors of i.
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assume in the following that these numbers (and, accordingly, also the vector xi) can take

any real value and postpone a discussion of flux quantisation to the end of the section.

In order to bring (3.46) into the form (3.39), we need to impose that WX =Wix
i = 0

holds off-shell, which translates into a number of conditions on the fluxes. We first observe

that we require

h(S) = 0 . (3.48)

This follows because, for h(S) 6= 0, WX = 0 would imply

κijkx
k = 0 ∀i, j . (3.49)

However, this would not be compatible with a non-vanishing axion decay constant

f2 ∝ AXX̄ ∝ κijkIm(Y i)xjxk 6= 0 (3.50)

such that we have to impose (3.48) as claimed. The requirement WX = 0 also constrains

those terms in (3.46) that are quadratic or linear in the Y i. We thus find the conditions

κijkg
j
αx

k = 0 ∀i , fαix
i = 0 . (3.51)

This is analogous to the orthogonality conditions we had in previous subsections (cf.,

e.g., (3.38)). These are 2n + 2 real homogeneous conditions for n components of the real

vector xi. Since we want exactly one light axion combination, the direction of xi should be

completely fixed by the fluxes fαi, g
i
α. We therefore demand that n− 1 conditions in (3.51)

are linearly independent. Thus, (3.51) determines xi up to an overall scale.

We will now show how to solve the F -term constraints for the above setup. For

convenience, we will set all axion vevs to zero, i.e., Re(Y i) = Re(S) = 0. This can always

be done without loss of generality since the axions are shift-symmetric up to a change in

the flux numbers. We can therefore absorb any axion vevs into the flux parameters in

W (recall that we temporarily neglect flux quantisation). Furthermore, it will be crucial

that we will solve the F -term constraints for the fluxes instead of the moduli. This has the

advantage that all constraints can in the end be written as a rather simple equation system.

The F -term constraints DiW = DSW = 0 yield

0 = f0i − 2κijkg
j
1Im(S)Im(Y k)− 2

Im(W)

A
κijkIm(Y j)Im(Y k) , (3.52)

0 = w1 − κijkgi1Im(Y j)Im(Y k)− Im(W)

2Im(S)
, (3.53)

0 = f1iIm(S) + 2κijkg
j
0Im(Y k) + 2

Re(W)

A
κijkIm(Y j)Im(Y k) , (3.54)

0 = f1iIm(Y i) +
Re(W)

2Im(S)
. (3.55)

One can check that the terms in the first two equations are all proportional to one of the

fluxes w1, f0i, g
i
1. For simplicity, we will solve them by setting

w1 = f0i = gi1 = 0 . (3.56)
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The only non-trivial equations are then (3.54), (3.55). Analysing these equations will be

sufficient to illustrate our main points, which can easily be generalised to solutions with

non-zero w1, f0i, g
i
1.

In order to further simplify (3.54), (3.55), we observe that they are invariant under the

rescalings

{
Im(S), Im(Y i),Re(W), f1i, g

i
0

}
→
{
αIm(S), βIm(Y i), β5γRe(W),

β4γ

α
f1i, β

3γgi0

}
(3.57)

for arbitrary α, β, γ. Without loss of generality, we can therefore choose

Re(W) = Im(S) = A . (3.58)

Using this together with (3.40)–(3.42), we find that (3.54) is solved by

gi0 = f i1 , w0 = 0 , (3.59)

where f i1 = Ki̄f1̄. This is equivalent to the well-known ISD condition F3 = −e−φ ?6 H3 in

10d language [80].

The conditions that remain to be satisfied are then (3.51) and (3.55). Using the above

results, they simplify to the system of equations

κijkf
j
1x

k = 0 , f1ix
i = 0 , f1iKi = i . (3.60)

Note that this can equivalently be written as

κijkf
j
1x

k = 0 , Aixi = 0 , f1iKi = i , (3.61)

as follows from contracting the first equation with Ki and then using (3.40)–(3.42).

Eqs. (3.60) are the main equations in this subsection. We want to find a solution to

this system for xi such that a long winding trajectory is obtained. We will argue that, if

a sufficient number of axions mix, xi can be rotated into an aligned direction without a

backreaction effect on the moduli. The overall normalisation of xi is irrelevant to show this

and hence we will only consider the unit vector x̂i from now on.

A key point for the following discussion is that the general solution x̂i to (3.60) has

free parameters. These parameters come in two types. First, since the equations in (3.60)

depend on Ki and Ki̄ (through f i1 = Ki̄f1̄), the solution x̂i will depend on the moduli

vevs Im(Y i). Recall that those are unconstrained parameters since we already solved

the corresponding F -term constraints by eliminating some of the fluxes (cf. (3.59)). The

Im(Y i) may therefore be set to any desired value compatible with our assumption of large

complex structure.

Second, the solution x̂i will depend on the flux numbers f1i. As discussed earlier, x̂i is

fully determined by (3.60) if f1i is chosen such that the n× (n+ 1) matrix (κijkf
k
1 , f1j) has

rank n−1. Apart from this requirement, f1i is an arbitrary real vector with n components

that we may choose however we like. Let us also assume that we have a mixing of p ≤ n

axions, i.e., p components of xi are non-zero. This implies that the unit vector x̂i has p− 1
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independent components. For fixed moduli vevs, (3.60) thus depends on n+p−1 variables

(f1i and x̂i) and yields at most n+2 linearly independent equations. A sufficient condition

for free flux parameters is therefore n ≥ p ≥ 4.17 We will see below that requiring x̂i

to depend on these parameters yields a further condition on the dual triple intersection

numbers κijk. Let us denote the free flux parameters by λi. The general solution to (3.60)

is therefore of the form

x̂i = x̂i
(
Im(Y i), λi

)
. (3.62)

We can now try to construct aligned or misaligned winding trajectories in this setting.

Recall that misalignment means that x̂i is aligned with a diagonal in the p-dimensional

axion field space. On the other hand, alignment means that x̂i is aligned with a hyperplane.

We observe that (mis-)aligned winding trajectories can be engineered in two qualitatively

different ways:

• The first option is to adjust the moduli vevs Im(Y i) such that x̂i is (mis-)aligned.

Since both x̂i and Ai̄/A depend non-trivially on the moduli, it is difficult to judge

whether this leads to large field ranges unless one sets out to perform a detailed

model-by-model analysis. In particular, any change in x̂i achieved by adjusting the

Im(Y i) will in general backreact on Ai̄/A and thus potentially destroy the long

trajectory. Indeed, we showed this backreaction to forbid large field ranges whenever

x̂i is aligned with a coordinate axis in the axion field space, cf. sections 3.1 and 3.4. In

particular, this fully excluded aligned winding in the case p = 2. On the other hand,

we argued that, if x̂i is aligned with a diagonal or a hyperplane, the backreaction

does not generate large hierarchies in the moduli vevs such that our no-go theorem

can be evaded.

• The second option is to adjust the λi parameters. Remarkably, they only appear

in x̂i but not in Ai̄/A such that making x̂i large this way does not backreact on

the Ai̄/A factor. It is therefore straightforward to determine when long trajectories

can be realised, even without analysing particular models. As we will see below, λi

parameters arise if the number of mixing axions p is large enough and a geometric

condition involving the dual triple intersection numbers κijk is satisfied. The problem

of constructing large field ranges is thus reduced to a condition purely on the geometry

of the manifold.

We now discuss this second option in more detail. Without loss of generality, let us

choose a basis such that x̂i lies in the “1” direction and f1i in the “2” direction. Crucially,

this is not necessarily a basis of the Kähler cone. In this basis, (3.60) can be satisfied if

κi1
2̄ = 0 , K2 6= 0 . (3.63)

17For our purposes, we need the existence of real solutions of our system of equations for the fluxes and

the x̂i. Since that system (defined by the integers κijk) is non-linear, this may impose extra conditions on

the triple intersection numbers. We leave the study of this to future work.
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The requirement that the direction of x̂i is completely fixed by (3.60) for a given flux choice

f1i (i.e., that rk(κijkf
k
1 , f1j) = n− 1) becomes

rk(κij
2̄, δ2

j ) = n− 1 . (3.64)

We now claim that a sufficient condition for free parameters λi is

n ≥ p ≥ 4 , n− p+ 1 < rk(κ1j
ᾱ) , (3.65)

where α = 3, . . . , n labels the directions orthogonal to x̂i and f1i. To see this, consider a

small deformation f1i → f1i + εi, x̂
i → x̂i + λi(εj) of a given solution to (3.60). We argued

above that there must be at least p− 3 such deformations (corresponding to p− 3 free flux

parameters). However, we have not excluded yet that these deformations leave x̂i invariant,

i.e., that εi 6= 0 while λi = 0. To show that this is not the case, let us assume that all

p − 3 deformations satisfy λi = 0. Expanding (3.60) up to linear order and using (3.63),

we then find

ε1 = 0 , ε2 = −εαK
α

K2
, κ1j

ᾱεᾱ = 0 , (3.66)

where again α = 3, . . . , n and εı̄ = εi because εi is real. The last condition yields n

homogeneous equations for the n−2 components εα. If (3.65) holds, at most p−4 of these

components remain unfixed by (3.66). Since the total number of linearly independent

deformations is at least p− 3, it then follows that there must be at least one deformation

that is not captured by the ansatz λi = 0. This proves our above claim that (3.65) is a

sufficient condition for the existence of free parameters λi.18 Note, however, that this does

not yet determine how x̂i depends on these parameters, i.e., how close to a hyperplane

in the axion field space we can rotate x̂i in a given model. It would therefore clearly be

important to study our idea further on explicit Calabi-Yaus.

To summarise, we have argued that winding trajectories in Calabi-Yau compactifica-

tions at large complex structure are governed by the simple set of equations (3.60). These

admit a solution on any manifold for which (3.63), (3.64) hold in some basis. The trajec-

tories can be made long in two ways: either by adjusting the moduli vevs Im(Y i) or by

adjusting the flux parameters λi. A sufficient condition for such parameters to exist is that

the number of complex-structure moduli is at least 4 and a condition on the rank of the dual

triple intersection numbers is satisfied, cf. (3.65). The problem of realising long trajectories

in this setting thus reduces to a condition purely on the geometry.19 It will be interesting

to study in detail whether there are indeed Calabi-Yaus satisfying this condition.

Finally, let us discuss two possible obstacles to the realisation of the above ideas on

a concrete Calabi-Yau. First, we stress that the fluxes f1i cannot be made arbitrarily

large but are bounded by tadpole cancellation through |f1i|2 ∼ Qloc
3 , where Qloc

3 denotes

18Using similar reasoning, one may attempt to derive a (more complicated) condition which is both

necessary and sufficient. To keep the discussion simple, we omit a detailed derivation of such a refined

condition here.
19Note that the conditions involving the triple intersection numbers in (3.63)–(3.65) are in general not

topological due to their dependence on inverse metric factors Ki̄ and hence on the complex-structure

moduli.
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ε(λ)

f11

f12

Figure 6. 2d slice of the flux lattice and the surface traced out by the free parameters λi before

and after adjusting the moduli vevs.

the combined D3-charge of the O3/O7-planes and D3/D7-branes in the compactification.

Since aligning or misaligning the effective axion trajectory relies on large flux numbers,

this implies that there is an upper bound on the possible enhancement of f2. However,

Calabi-Yaus can in general have rather large tadpoles such that we do not expect this to

be a serious issue. Second, we need to properly take into account flux quantisation. In

order to simplify the discussion, we assumed above that the components of the flux vector

f1i can take any real value while they are actually constrained to be integer. A possible

concern is therefore that the surface traced out by the λi parameters in flux space does not

hit any points on the integer flux lattice (cf. figure 6). The freedom to align x̂i by adjusting

the λi parameters would then only be an artifact of our assumption of a real flux vector.

While we do not present a detailed analysis here, it is plausible that this is not an issue for

the following reason. As explained above, we still have the freedom to adjust the moduli

vevs Im(Y i) however we like. Furthermore, we can use the shift symmetry of W to shift

the non-integer parts of some of the flux numbers into the axion vevs Re(Y i). We expect

that this freedom in Im(Y i), Re(Y i) can be used to slightly “wiggle” around the location

(f1i, g
j
0) of a solution in flux space and thus move it to a nearby properly-quantised point

(f̃1i, g̃
j
0) on the flux lattice. It will be interesting to study this in more detail in explicit

constructions realising our idea.

4 Effective field theory of the light axion

In this section, we discuss the stabilisation of the Kähler moduli in the presence of the light

axion χ. In particular, we work out the necessary conditions to ensure the required mass

hierarchy for a low-energy effective field theory (EFT) for χ. While section 4.1 is devoted to

summarising our most important results, section 4.2 shows in detail that tree-level and loop

corrections to the moduli masses and to the potential for χ can consistently be neglected

at sufficiently large volume and small string coupling. We also investigate the possible role

of a complex-structure dependence of the non-perturbative effects in the superpotential.

In section 4.3, we analyse whether models of large-field inflation can be realised within
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the winding scenario. We find this to be challenging due to additional phenomenological

constraints, which are in tension with the previous requirement of large volume.

4.1 Mass scales and axion potential

As we will see below, consistency of the EFT requires V � 1. We therefore stabilise the

Kähler moduli according to the large-volume scenario (LVS) [88, 89]. Before we address our

setup with one light axion, let us briefly recall the original LVS setup where all complex-

structure moduli are stabilised by fluxes. For simplicity, we will focus on the simple example

CP4
(1,1,1,6,9)[18], which has only two Kähler moduli. The volume20 in terms of the 4-cycle

volumes τA is then of swiss-cheese type, i.e.,

V =
1

9
√

2
(τ

3/2
b − τ3/2

s ) . (4.1)

The 4-cycle volume τb controls the size of the Calabi-Yau, while τs parametrises the size of

a small blow-up cycle in the Calabi-Yau. After having fixed all complex-structure moduli

via fluxes, the superpotential including non-perturbative corrections is of the form

W =W0 +As eiasTs , (4.2)

where W0 denotes the vev of the tree-level flux superpotential. To next-to-leading order,

the α′-corrected Kähler potential is

K = Kcs − log
2

gs
− 2 log

(
V +

ξ

2g
3
2
s

)
, (4.3)

where ξ = −χ(X3)ζ(3)/2(2π)3 and χ(X3) is the Euler characteristic of the Calabi-Yau

threefold X3. This leads to a scalar potential of the form

VLVS(τs, τb) = gse
Kcs

(
12
√

2τs
V

(asAs)
2 e−2asτs − 2|W0|τs

V2
as|As| e−asτs +

3

8

ξ|W0|2

g
3
2
s V3

)
,

(4.4)

where the axionic partner of τs has already been stabilised. At the LVS-minimum, we

have [88]

τs ∼
ξ

2
3

gs
, V ∼ |W0|

as|As|
√
gs
ξ

1
3 easτs . (4.5)

The on-shell value of the scalar potential (and, hence, the AdS curvature scale) is given by

(cf. eq. (B.18) in [53])

VLVS

∣∣
τs,V∼ −m

2
AdS ∼ −

√
gse
Kcsξ

1
3 |W0|2

V3
. (4.6)

20We use a notation where the volume of the Calabi-Yau is given by V = 1
6

∫
X3

J∧J∧J = 1
6
kABC t

AtBtC

in terms of basis 2-cycle volumes tA. We define the complexified Kähler moduli as TA = bA + iτA, where

the 4-cycle volumes τA are related to the tB as τA = ∂tAV.
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In the large-volume limit, the modulus τs is heavy in comparison to the volume modu-

lus τb [89]:

mτs ∼ eKcs/2 |W0|ξ2/3

√
gsV

, mτb ∼ eKcs/2 |W0|
√
ξ

g
1/4
s V3/2

. (4.7)

For completeness, we note that the axion associated to τs is stabilised at the same scale as

τs. The axion associated to τb is effectively massless as it only receives a mass ∼ e−τb from

non-perturbative effects neglected in (4.2), (4.3). This axion has a tiny decay constant fbb ∼
V−2/3 � 1 [90]. We therefore have an additional light axion of small field range present in

our EFT. This does not pose a problem for section 4.3 because, in the large-volume limit,

the axion is so light that it will play no role during the inflationary dynamics [89, 91].

After having reviewed the LVS, we now focus on the winding scenario, where one

complex-structure axion remains unstabilised by the fluxes. As in section 3.5, we denote

by X the complex field whose real part is the light axion χ. As before, X is some linear

combination of a subset Ui of the complex-structure moduli Y i = {Ui, Z} with Ui = xiX

and xi some integer numbers. Recall that the axionic shift symmetry of χ was ensured in

the previous sections by working at large complex structure for the moduli Ui. This shift

symmetry is broken classically by terms ∼ eiUi , leading to a periodic potential for χ [10].

In order to derive the potential for χ, we consider

V = eK
(
KTAT̄B DTAW DT̄B

W +KXX̄
∣∣DXW

∣∣2−3|W|2
)
, (4.8)

where we have already integrated out the axio-dilaton and all complex-structure moduli

apart from X. Let us denote the individual parts of the scalar potential by

VGKP = eKKXX̄
∣∣DXW

∣∣2 , VLVS = eK
(
KTAT̄B DTAW DT̄B

W − 3|W|2
)

(4.9)

so that the full potential can be written as V = VLVS + VGKP. Here, VGKP is assumed to

generate the leading potential for χ, while VLVS yields the familiar potential (4.4) stabilising

the Kähler moduli. We will show in section 4.2 that this assumption is self-consistent at

sufficiently large V and small gs.

The superpotential and Kähler potential are again given by (4.2) and (4.3). For con-

venience, we split W0 and Kcs into a large-complex-structure part, which is independent

of χ, and an exponentially suppressed part, which produces the potential for χ:

W0(X) =Wlcs +Wax(X) , Kcs(X, X̄) = Klcs(X − X̄) +Kax(X, X̄) ,

Wax ∼ eiUi ∼ e−ui , Kax ∼
i
(
Ui − Ūi

)
A

(
eiUi + e−iŪi

)
∼ uie

−ui

A
. (4.10)

Here, we have only schematically displayed the Ui-dependence and the orders of magnitude

of Wax and Kax. We refer to [10] for fully explicit expressions.21

If we work in a regime where As ∼ O(1) and e−ui � e−asτs , we have ∂XW ≈ ∂XWax.

Let us also assume ∂XWax � KXW, e.g., by choosing W0 sufficiently large. We will

21There are in general also termsWax ∼ uie
−ui � e−ui but these have to be put to zero by an appropriate

flux choice in order to allow the structure (3.1) [10].
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again see in section 4.2 that these assumptions are self-consistent. Recall furthermore

that DXW = 0 implies KX = 0 in the large-complex-structure limit for all values of

χ. Including the exponentially suppressed corrections (4.10), we can therefore estimate

KX ∼ ix?u?e
−u?/A, where we used ∂Ui/∂X = xi and u? denotes the smallest of the ui.

Crucially, this estimate for KX holds off-shell, i.e., away from the minimum for χ. Using

this, the leading contribution to the potential for χ is

VGKP ∼
gse
Kcs

V2
|W0|2KXX̄KXKX̄ ∼

gse
Kcs

V2

|W0|2

A2
KXX̄x2

?u
2
?e
−2u? |λ(x?χ)|2 , (4.11)

where λ is a complex periodic function of χ. At the minimum, we have KX ≈ 0 and,

hence, λ ≈ 0.

The axion mass is given by m2
χ ∼ ∂2

χVGKP/KXX̄ . Hence,

mχ ∼ eKcs/2

√
gs|W0|
VA

x2
?u?e

−u?

f2
, (4.12)

where we used that KXX̄ & K−1
XX̄

= f−2 by eq. (3.45). In order to keep track of the

different instanton contributions to this mass, we can associate different mass scales to

them. Let us denote the mass scale associated to the instanton with the longest periodicity

by mlong
χ and the mass scales associated to the shorter instantons collectively by mshort

χ .

This distinction will in particular become important in the context of inflation, where the

potential generated by the long instanton must dominate, see section 4.3. We thus find

mlong
χ ∼ eKcs/2

√
gs|W0|
VA

ulonge−ulong

f2
, mshort

χ ∼ eKcs/2

√
gs|W0|
VA

N2ushorte
−ushort

f2
.

(4.13)

Here, we used that, for the instanton with the longest periodicity, we have xi ∼ O(1), while

the short instantons have xi ∼ O(N).

In order to consistently integrate out τb and arrive at an EFT for the light axion χ,

we need to establish a hierarchy in the mass scales such that

mlong
χ , mshort

χ � mτb . (4.14)

Comparing (4.7) to (4.13) shows that this poses no big problem as the ui vevs can easily

be tuned and the dependence on them is exponential.

4.2 Corrections

As stated above, we still need to show that there is a regime where our stabilisation

scheme is self-consistent. In particular, we assumed that the Kähler moduli are stabilised

by the VLVS-part of the scalar potential (as in the usual LVS), while the potential for χ

is generated by the terms in VGKP. This requires that corrections to the χ-potential from

VLVS as well as corrections to the τA masses from VGKP are subleading. Furthermore,

there can be loop corrections to the scalar potential, which need to be subleading as well.

We have summarised the different mass scales in our scenario and the magnitudes of the
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various tree-level and loop corrections in table 1. As we will see below, all corrections can

self-consistently be neglected in the regime

Nf

x?
√
Vg1/4

s

� x?u?e
−u?

A
� f
√
Vg3/4

s

, (4.15)

which is satisfied for, e.g.,

x?u?e
−u?

A
∼
√
Nf√
x?gsV

, gs �
x2
?

N2
. (4.16)

In the same regime, the AdS curvature scale is small compared to the saxion masses, setting

our type IIB constructions apart from the type IIA model of section 2.2.22 We will also

see that the above constraints on u? and gs are relaxed significantly if As in (4.2) can be

assumed to be independent of χ. Readers not interested in the detailed derivation of these

results may skip directly to section 4.3.

4.2.1 Tree-level corrections to the Kähler moduli masses

Let us begin with the term VGKP, which yields corrections δmGKP
τA

to the Kähler moduli

masses. We find that23

(
δmGKP

τA

)2
=
∂2
τA
VGKP

KTAT̄A
∼ eKcs

gs√
τAV3

KXX̄

KTAT̄A
KXKX̄ |W0|2 . (4.17)

According to the discussion above (4.11), we have KX ∼ ix?u?e
−u?/A. Since KTAT̄A ∼

(V√τA)−1 and KXX̄ & f−2, this amounts to

(
δmGKP

τA

)2 ∼ eKcs
gs
V2

|W0|2x2
?u

2
?e
−2u?

A2f2
. (4.18)

We want to enforce the condition

mτA � δmGKP
τA

(4.19)

so that the Kähler moduli are not in danger of being destabilised by the corrections.

Comparing (4.18) with (4.7), we conclude that this can always be achieved by a suitable

tuning of the saxion values ui. Explicitly, we find for τb the necessary requirement

x?u?e
−u?

A
� f
√
Vg3/4

s

. (4.20)

One checks that this inequality is indeed satisfied in the regime (4.16). Also note that

it follows from (4.12) that δmGKP
τA

∼ f
x?
mχ & mχ, where we assumed f ∼ O(N) and

x? . O(N). Hence, (4.19) already implies (4.14).

22One furthermore checks that VGKP � VLVS in this regime such that the total vacuum energy is positive,

except very close to the minimum of the χ-potential.
23Here and in the following, we define δm as the square-root of the correction to m2, i.e., the total squared

mass is given by m2 + (δm)2 rather than (m+ δm)2.
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Mass scales As = const. As = As(χ)

mτs

|W0|√
gsV

mτb

|W0|
g

1/4
s V3/2

δmGKP
τb

√
gs |W0|
V

x?u?e
−u?

Af

mχ

√
gs |W0|
V

x2
?u?e

−u?

Af2

mAdS
g

1/4
s |W0|
V3/2

δmLVS
χ

g
1/4
s |W0|
V3/2

x?
√
u?e
−u?/2

√
Af

g
1/4
s |W0|
V3/2

N

f

δm1-loop
τb

g
3/2
s |W0|
V5/3

δm1-loop
χ

g
3/2
s |W0|
V5/3

N

f

Table 1. The table summarises the appearing mass scales and the magnitude of the different

corrections. We divided all results by a factor of eKcs/2.

4.2.2 Tree-level corrections to the axion potential

Next, we consider possible corrections δmLVS
χ to the χ-potential from VLVS. It turns out

that the magnitude of these corrections depends crucially on whether As in the super-

potential (4.2) is assumed to depend on χ or not. For a general Calabi-Yau threefold,

As(Y
i) is an unknown function of the complex-structure moduli Y i [92, 93]. Its explicit

dependence has so far only been computed for simple examples such as toroidal N = 1

orientifolds [94, 95]. However, one can argue that As in our case is not a function of χ.

Before we discuss this conjecture in more detail, let us first state the corrections δmLVS
χ .

We do this both for the case where As is constant in χ and for the case where it is a

function of χ with As ∼ ∂UiAs ∼ O(1).

Consider first the case As = As(χ). With (4.5) and (4.6), we find that

(
δmLVS

χ

)2
=

1

KXX̄
∂2
χVLVS

∣∣
τs,V ∼

N2

KXX̄
VLVS

∣∣
τs,V ∼ eKcs

√
gs|W0|2

V3

N2

f2
, (4.21)

where we used that ∂χAs ∼ xiO(1) . N as well as KXX̄ = f2. Requiring δmLVS
χ �

mχ yields

x2
?u?e

−u?

A
� Nf
√
Vg1/4

s

. (4.22)

– 31 –



J
H
E
P
0
3
(
2
0
1
9
)
1
9
2

blow-up

τs

Figure 7. The point-like singularity is resolved by the blow-up cycle τs by replacing the point with

a projective space CP1. The figure is adapted from [96].

To successfully achieve both (4.22) and (4.20), we require a small string coupling,

gs � x2
?/N

2. In the regime (4.16), all inequalities are satisfied.

Consider now the case where As is independent of χ. The leading correction δmLVS
χ is

now due to the χ-dependence of the prefactor eKcs in (4.6). Using ∂2
χKcs ∼ x2

?u?e
−u?/A,

we find (
δmLVS

χ

)2
=

1

KXX̄
∂2
χVLVS

∣∣
τs,V∼ eKcs

√
gs|W0|2

V3

x2
?u?e

−u?

Af2
. (4.23)

This is exponentially suppressed by the extra factor x2
?u?e

−u?/(N2A) in comparison to

eq. (4.21). Imposing the hierarchy δmLVS
χ � mχ now implies that

x2
?u?e

−u?

A
� f2

√
gsV

. (4.24)

We observe that satisfying this together with (4.20) is much less constraining than having

to satisfy (4.22) and (4.20). In particular, if As is independent of χ, we can relax the

condition gs � x2
?/N

2. Note, however, that small gs also ensures that the AdS scale is

small compared to mτb (cf. table 1).

Let us now motivate in more detail the possibility that As is constant in χ. Recall

that, in deriving the LVS minimum, it turns out to be crucial that τs is a blow-up mode

of a point-like singularity [88, 96] (cf. figure 7). A point-like singularity can be blown

up by replacing it with a projective space like CP1, thereby introducing an “exceptional”

divisor. This divisor has an associated Kähler modulus, which in our case corresponds to

τs. Further studies [97] showed that a natural candidate for a blow-up mode supporting the

non-perturbative effect in W is a so-called “diagonal” del Pezzo divisor. Such a blow-up is

local, holomorphic and leaves the complex structure invariant, cf., e.g., [98] section 4.3.4.

Indeed, the 4-cycle parametrised by τs in our example is of this type. If the local geometry

close to the singularity involves 3-cycles, then there will be a backreaction of the complex

structure on the blow-up. To avoid this, we assume that no such local 3-cycles are present.

In particular, consider cutting off the part of the Calabi-Yau containing the blow-up and

taking a limit where the boundary is taken to infinity at fixed blow-up-cycle volume. Our

assumption is that, in such a non-compact limit, the blow-up does not possess any complex-

structure deformations. This guarantees that, in the limit of small τs, the complex-structure
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dependence of As introduced by the D3-instanton on the shrinking cycle can be neglected.

Note that, even though τs ∼ 1/gs & O(1) at the LVS minimum, understanding the limit

τs → 0 is still relevant for our setup. Indeed, it is known that As does not depend on the

Kähler moduli. Hence, if As can be argued to not depend on χ for small τs, the same must

be true at large τs. We will leave a more careful treatment of a possible complex-structure

dependence of As for future works.

4.2.3 Loop corrections

Let us finally discuss loop corrections to the scalar potential. While the superpotential only

receives non-perturbative corrections, the Kähler potential can obtain contributions at ev-

ery order in perturbation theory. In particular, there are loop corrections which depend on

the complex-structure moduli [99–102] and could therefore break the shift symmetry of χ.

The Kähler potential also receives non-perturbative contributions from brane or worldsheet

instantons, but they are subdominant in comparison to the perturbative corrections and

will therefore be ignored in the following, see, e.g., [103, 104]. The known loop corrections

to the Kähler potential satisfy an extended no-scale structure such that they affect the

scalar potential only at subleading order in the volume [99–102, 105]. In particular, the

scalar potential for our example V ∼ (τ
3/2
b − τ3/2

s ) receives a 1-loop-correction [102]

V1-loop ∼ eKcs
|W0|2

V3

{
g3
s

(
CKb (Y, Ȳ )

)2
V1/3

+ g
3
2
s CKs (Y, Ȳ )

}
, (4.25)

where we used τs ∼ 1/gs and neglected O(1) prefactors as well as further CKb/s-dependent

terms subleading in gs. The correction is due to the exchange of Kaluza-Klein modes

between D7-branes wrapped on the 4-cycles associated to τb/s and D3-branes localised

on the internal manifold (or equivalently between O7- and O3-planes).24 The coeffi-

cients CKb and CKs are functions of the complex-structure moduli whose explicit form is

in general unknown.25

We ensure that the second term ∼ g
3/2
s CKs vanishes by assuming that there is no D7-

brane wrapped on τs. Hence, the non-perturbative effects ∼ Ase−asτs in the superpotential

have to be generated by D3-brane instantons. Using (δm1-loop
χ )2 ∼ ∂2

χV1-loop/KXX̄ , we then

find that the loop effects contribute at a scale

δm1-loop
χ ∼ eKcs/2 g

3
2
s |W0|
V

5
3

N

f
. (4.26)

Here, we assumed that CKb ∼ O(1), ∂UiCKb ∼ O(1), which implies ∂χCKb ∼ xiO(1) . NO(1).

We observe that the loop corrections are suppressed by an additional volume factor V−1/6

compared to the tree-level corrections (4.21). Ensuring that the tree-level corrections are

negligible thus implies that also the loop corrections can be neglected,

δm1-loop
χ � mχ . (4.27)

24Notice that, for the example under consideration, there are no further contributions due to the exchange

of winding modes since the two divisors do not intersect [102, 106].
25For toroidal orientifolds, CK is given by Eisenstein series involving polynomial as well as exponential

terms in the complex-structure moduli [100, 101].
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≳ MP

V(
χ)

χ

V(
χ)

χ

Figure 8. Examples of axion potentials with a large field range. The potential on the right-hand

side has a large monotonic region as required by inflation.

Similarly, as is well known, loop corrections to the Kähler moduli masses are suppressed

by a volume factor and can therefore consistently be neglected as well, δm1-loop
τA � mτA .

We have thus shown that both tree-level and loop corrections to the moduli masses and

the axion potential of section 4.1 are negligible in the regime (4.16).

4.3 Towards inflation

Let us finally come to the issue of realising inflation using the axion χ. While inflationary

model building is not the focus of this paper, we stress that it is more difficult than just

constructing an EFT for an axion with a large field range. The reason is that we then have

to fulfill further constraints in addition to (4.16). In particular, in order to have a large

monotonic region in the inflaton potential, the instanton of large periodicity is required to

dominate over the short-period instantons in the potential (4.11) (see figure 8), i.e.,

mlong
χ � mshort

χ . (4.28)

The issue of higher harmonics has also been analysed in the context of KNP [9] and, if the

effect is not too strong, this can be valuable for phenomenology [24].

Recall that, according to the discussion in section 3.4, the required hierarchy between

mlong
χ and mshort

χ can plausibly be realised if we consider an alignment of three (or more)

axions. For instance, in the setup of figure 5, the light axion is aligned with the a1-

a2-plane in the axion field space, and there is no apparent obstruction to stabilising the

moduli such that e−ushort“=”{e−u1 , e−u2} � e−u3 = e−ulong . With (4.13), this then indeed

implies (4.28).

In addition, there are phenomenological constraints. First, in order to obtain a positive

inflaton potential at the end of inflation, we require a suitable uplift of the LVS AdS

minimum. This is a non-trivial step since an uplift term in the scalar potential depends

on the moduli and can therefore destroy the delicate stabilisation scheme worked out in

section 4.2.

Second, large-field inflation requires that the inflaton mass mlong
χ is of the order

1013GeV. Since mτb � mlong
χ , we then have

|W0|
g

1/4
s

√
AV3/2

� 10−5 (4.29)
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in Planck units, where we used eKcs = 1/A. In addition, we have the con-

straint that the gravitino mass should be smaller than the Kaluza-Klein scale [107].

This yields [10, 108, 109]
m3/2

mKK
∼
√
gs|W0|
A1/3V1/3

� 1 . (4.30)

In general, this is not an issue since V is exponentially large (cf. sections 4.1, 4.2). However,

together with (4.29), we obtain the tight constraint

10−5
√
AV3/2g1/4

s � |W0| �
A1/3V1/3

√
gs

, (4.31)

which is in tension with the requirement of exponentially large V. In particular, (4.31)

implies (forgetting about a factor A1/6)

V7/6g3/4
s � 105 . (4.32)

At the LVS minimum, the volume satisfies

V ∼ exp(asτs) ∼ exp

(
α

gs

)
, α ≈ 0.07

(
−χ
c

)2/3

, (4.33)

where we used as = 2π, τs = ξ2/3

(2c)2/3gs
and ξ = − χζ(3)

2(2π)3 . Here, χ is the Euler characteristic,

which is negative in the LVS, χ ≤ −2. The number c is related to the triple self-intersection

number of the cycle associated to τs and can be shown to obey c ≤
√

2
3 on any Calabi-

Yau with a blow-up cycle of the type necessary for the LVS [53]. For the simple example

CP4
(1,1,1,6,9)[18] discussed in this section, we have χ = −540 and c = 1

9
√

2
≈ 0.079 such that

α ≈ 25.8. The volume is therefore extremely large even at the boundary of perturbative

control, i.e., V & O(1011) for gs . 1. It is therefore impossible to satisfy (4.32) on this

particular manifold. However, the situation may improve on other Calabi-Yaus with a

smaller |χ| and/or a larger c. In particular, because of χ ≤ −2 and c ≤
√

2
3 , we have

α & 0.19. For values of α sufficiently close to this bound, there is a small window in which

inflation might be realisable. We leave a detailed study of the winding scenario on such

manifolds for future work.

5 Conclusions

In this paper, we studied winding trajectories of complex-structure axions in type IIB flux

compactifications (see figure 1). We argued that large-f effective axions can be constructed

along such trajectories and discussed several concrete proposals to realise this idea. (For

recent results in a different approach see [62, 63].)

We first studied the simplest setting of aligned winding in a 2-axion field space, where

the effective axion is aligned with one of the two fundamental axions. We found a general

no-go theorem ruling out large f in such models on any Calabi-Yau. Our result is based

on the observation that the flux choice required for the alignment leads to a hierarchy in

the saxion vevs. This hierarchy has the effect of cancelling a naive enhancement factor in

f and thereby constrains f to be sub-Planckian.
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We offered three alternatives to circumvent this issue. First, we discussed the idea of

misaligned winding, where the effective axion is aligned with (for example) a diagonal in

the 2-axion plane. We found that a hierarchy between the saxion vevs is avoided in this

setting such that parametrically large f appears possible. Such models can be shown to

not admit large monotonic regions in the axion potential and are therefore not suitable

for large-field inflation. They are, however, interesting as potential examples of large field

ranges in string theory.

In a second proposal, we included exponentially suppressed corrections in the super-

potential. Such corrections can soften the dangerous hierarchy in the saxion vevs if the

superpotential is fine-tuned to be very small. This is interesting because both large field

ranges and large monotonic regions in the potential may be realised this way.

Third, we considered an extension of the winding proposal to three or more fundamen-

tal axions. In particular, we showed that, contrary to the 2-axion case, aligned winding

in a 3-axion field space does not necessarily lead to a large hierarchy between the saxion

vevs. This suggests that such models can realise large field ranges and large monotonic re-

gions in the axion potential. Developing this idea further, we performed a general study of

(mis-)aligned winding in the large-complex-structure limit, where we allowed the winding

trajectory to be a combination of an arbitrary number of axions. If the axion number is

at least 4 and certain geometric conditions on the mirror-dual triple intersection numbers

are satisfied, some of the flux parameters do not backreact on the saxion vevs. These

fluxes can potentially be utilised to engineer a long winding trajectory. This idea could

be a promising starting point for constructing explicit alignment models in type IIB with

super-Planckian monotonic regions in the axion potential. It would be very interesting to

study this and the other proposals discussed above further on explicit Calabi-Yaus.

Our results may have important implications for axionic versions of the WGC and other

swampland conjectures. In particular, the Smallest Charge WGC requires f to be sub-

Planckian in the regime of a controlled instanton expansion. Finding explicit geometries

that realise (mis-)aligned winding would therefore imply a parametric violation of the

Smallest Charge WGC. From the perspective of the related (Sub-)Lattice WGC, this would

correspond to a parametrically large coarseness of the sub-lattice populated by the WGC

states. Furthermore, models of aligned winding with super-Planckian monotonic regions

in the axion potential would imply a parametric violation of the Strong WGC. Finally, our

constructions can be argued to parametrically violate the refined version of the Swampland

Distance Conjecture.

With the aim of building a low-energy EFT for the large-f effective axion, we recon-

sidered the LVS in the presence of a light complex-structure axion. Our discussion of the

relevant mass scales suggests that there are no general obstructions to constructing such

an EFT. In particular, we computed possible corrections spoiling the large field range and

showed that they are suppressed for large enough volume and very small string coupling

gs. The requirement of very small gs is relaxed if one assumes that the complex-structure

dependence of non-perturbative corrections to the superpotential is negligible. We gave

an argument for why this is indeed expected if the cycle supporting the non-perturbative

effect is a local blow-up. It might be interesting to understand, also independently of our

initial motivation, non-perturbative effects on these local blow-ups in more details.
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One of the primary motivations for studying super-Planckian field ranges in string the-

ory is large-field inflation. We analysed whether such models can be realised in the context

of the winding scenario. Our conclusion is rather negative: we found strong constraints

that are in tension with the exponentially large volume in the LVS. Nevertheless, we also

found a small window where large-field inflation might be realisable and gave concrete

bounds on the required topological data of candidate Calabi-Yaus. It would be interesting

to study this possibility further in future work.
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