81,489 research outputs found
Defect chemistry of Ti and Fe impurities and aggregates in Al2O3
We report a theoretical evaluation of the properties of iron and titanium impurities in sapphire (corundum structured α-Al2O3). Calculations using analytical force fields have been performed on the defect structure with the metals present in isolated, co-doped and tri-cluster configurations. Crystal field parameters have been calculated with good agreement to available experimental data. When titanium and iron are present in neighbouring face and edge-sharing orientations, the overlap of the d-orbitals facilitates an intervalence charge transfer (FeIII/TiIII → FeII/TiIV) with an associated optical excitation energy of 1.85 eV and 1.76 eV in the respective configurations. Electronic structure calculations based on density functional theory confirm that FeIII/TiIII is the ground-state configuration for the nearest-neighbour pairs, in contrast to the often considered FeII/TiIV pair. Homonuclear intervalence charge transfer energies between both FeIII/FeII and TiIV/TiIII species have also been calculated, with the energy lying in the infra-red region. Investigation of multiple tri-clusters of iron and titanium identified one stable configuration, TiIII–(TiIV/FeII), with the energy of electron transfer remaining unchanged
Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A
Chromatic, Photometric and Thermal Modeling of LED Systems with Nonidentical LED Devices
published_or_final_versio
Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions
PublishedThe complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes.This work is funded by BBSRC grant BB/I020489/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Gyne and drone production in bombus atratus (Hymenoptera: Apidae)
For over a decade, our research group has studied the biology of the native bumblebee, Bombus atratus, to investigate the feasibility of using it to pollinate crops such as tomato, strawberry, blackberry and peppers. Traditionally, captive breeding has depended on the use of captured wild queens to initiate the colonies. The goal of the current work is to investigate conditions required to produce new queens and drones in captivity. In this study, 31 colonies were evaluated under either greenhouse or open field conditions over a 15 month period. A total of 1492 drones (D) and 737 gynes (G, i.e., virgin queens) were produced by all colonies, with 16 colonies producing both drones and gynes (D&G), 11 producing only drones (D) and 4 producing neither. Some of the D&G colonies had more than one sexual phase, but no colonies produced exclusively gynes. More drones and fewer gynes were produced per colony under greenhouse conditions with the highest number of drones produced by D&G colonies. The numbers of immature stages per cell declined in colonies as increasingly more resources were allocated to the production of gynes and the maintenance of increased nest temperature
Body odor quality predicts behavioral attractiveness in humans
Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits
Large Extra Dimension effects through Light-by-Light Scattering at the CERN LHC
Observing light-by-light scattering at the Large Hadron Collider (LHC) has
received quite some attention and it is believed to be a clean and sensitive
channel to possible new physics. In this paper, we study the diphoton
production at the LHC via the process through graviton exchange in the Large Extra
Dimension (LED) model. Typically, when we do the background analysis, we also
study the Double Pomeron Exchange (DPE) of production. We
compare its production in the quark-quark collision mode to the gluon-gluon
collision mode and find that contributions from the gluon-gluon collision mode
are comparable to the quark-quark one. Our result shows, for extra dimension
, with an integrated luminosity at the
14 TeV LHC, that diphoton production through graviton exchange can probe the
LED effects up to the scale for the forward
detector acceptance , respectively, where
, and .Comment: 25 pages. 7 figs. Change some grammatical error
Development of a technology adoption and usage prediction tool for assistive technology for people with dementia
This article is available open access through the publisher’s website at the link below. Copyright @ The Authors 2013.In the current work, data gleaned from an assistive technology (reminding technology), which has been evaluated with people with Dementia over a period of several years was retrospectively studied to extract the factors that contributed to successful adoption. The aim was to develop a prediction model with the capability of prospectively assessing whether the assistive technology would be suitable for persons with Dementia (and their carer), based on user characteristics, needs and perceptions. Such a prediction tool has the ability to empower a formal carer to assess, through a very limited amount of questions, whether the technology will be adopted and used.EPSR
- …
