599 research outputs found

    Aerosol optical properties at Lampedusa (Central Mediterranean) ? 2. Determination of single scattering albedo at two wavelengths for different aerosol types

    No full text
    International audienceAerosol optical properties were retrieved from direct and diffuse spectral irradiance measurements made by a multi-filter rotating shadowband radiometer (MFRSR) at the island of Lampedusa (35.5° N, 12.6° E), in the Central Mediterranean, in the period July 2001?September 2003. In a companion paper (Pace et al., 2005) the aerosol optical depth (AOD) and Ångström exponent were used together with airmass backward trajectories to identify and classify different aerosol types. The MFRSR diffuse-to-direct ratio (DDR) at 415.6 nm and 868.7 nm for aerosol classified as biomass burning-urban/industrial, originating primarily from the European continent, and desert dust, originating from the Sahara, is used in this study to estimate the aerosol single scattering albedo (SSA). A detailed radiative transfer model is initialized with the measured aerosol optical depth; calculations are performed at the two wavelengths varying the SSA values until the modelled DDR matches the MFRSR observations. Sensitivity studies are performed to estimate how uncertainties on AOD, DDR, asymmetry factor (g), and surface albedo influence the retrieved SSA values. The results show that a 3% variation of AOD or DDR produce a change of about 0.02 in the retrieved SSA value at 415.6 and 868.7 nm; a ±0.06 variation of the asymmetry factor g produces a change of the estimated SSA of <0.04 at 415.6 nm, and <0.06 at 868.7 nm; finally, an increase of the assumed surface albedo of 0.05 gives very small changes (0.01?0.02) in the retrieved SSA. The calculations show that the SSA of desert dust (DD) increases with wavelength, from 0.81±0.05 at 415.6 nm to 0.94±0.05 at 868.7 nm; on the contrary, the SSA of urban/industrial (UN) aerosols decreases from 0.96±0.02 at 415.6 nm to 0.87±0.07 at 868.7 nm; the SSA of biomass burning (BB) particles is 0.82±0.04 at 415.6 nm and 0.80±0.05 at 868.7 nm. Episodes of UN aerosols occur usually in June and July; BB aerosol episodes with large AOD and long duration are observed mainly in July and August, the driest months of the year, when the development of fires is favoured

    Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types

    Get PDF
    Aerosol optical depth and &#197;ngstr&#246;m exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001&ndash;September 2003. The average aerosol optical depth at 495.7 nm, &tau;, is 0.24&plusmn;0.14; the average &#197;ngstr&#246;m exponent, &alpha;, is 0.86&plusmn;0.63. The observed values of &tau; range from 0.03 to 1.13, and the values of &alpha; vary from &minus;0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of &tau; and low values of &alpha;, typical of Saharan dust (average values of &tau; and &alpha; are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of &tau; and &alpha; (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of &tau; (0.15), and relatively small values of &alpha; (0.92). Intermediate values of &alpha; are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of &tau; and &alpha; for clean marine conditions are 0.11 and 0.86, respectively. The largest values of &alpha; (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of &alpha;. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and &#197;ngstr&#246;m exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of &alpha;, that indicates an enhancement in the number of fine particles. The summer maximum of &tau; for African particles is associated with a weak reduction in the &#197;ngstr&#246;m exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of &tau; and &alpha; averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles

    Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter

    Full text link
    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure

    Estimate of surface direct radiative forcing of desert dust from atmospheric modulation of the aerosol optical depth

    Get PDF
    Abstract. Measurements carried out on the island of Lampedusa, in the central Mediterranean, on 7 September 2005, show the occurrence of a quasi-periodic oscillation of aerosol optical depth, column water vapour, and surface irradiance in different spectral bands. The oscillation has a period of about 13 min and is attributed to the propagation of a gravity wave able to modify the vertical structure of the planetary boundary layer, as also confirmed by satellite images. The wave occurred during a Saharan dust event. The oscillation amplitude is about 0.1 for the aerosol optical depth, and about 0.4 cm for the column water vapour. The modulation of the downward surface irradiances is in opposition of phase with respect to aerosol optical depth and water vapour column variations. The perturbation of the downward irradiance produced by the aerosols is determined by comparing the measured irradiances with estimated irradiances at a fixed value of the aerosol optical depth, and by correcting for the effect of the water vapour in the shortwave spectral range. The direct radiative forcing efficiency, i.e., the radiative perturbation of the net surface irradiance produced by a unit of optical depth aerosol layer, is determined at different solar zenith angles as the slope of the irradiance perturbation versus the aerosol optical depth. The estimated direct surface forcing efficiency at about 60° solar zenith angle is −(181 ± 17) W m−2 in the shortwave, and −(83 ± 7) W m−2 in the photosynthetic spectral range. The estimated daily average forcing efficiencies are of about −79 and −46 W m−2 for the shortwave and photosynthetic spectral range, respectively

    Estimate of surface direct radiative forcing of desert dust from atmospheric modulation of the aerosol optical depth

    Get PDF
    Measurements carried out on the island of Lampedusa, in the central Mediterranean, on 7 September 2005, show the occurrence of a quasi-periodic oscillation of aerosol optical depth, column water vapour, and surface irradiance in different spectral bands. The oscillation has a period of about 13 min and is attributed to the propagation of a gravity wave able to modify the vertical structure of the planetary boundary layer, as also confirmed by satellite images. The wave occurred during a Saharan dust event. The oscillation amplitude is about 0.1 for the aerosol optical depth, and about 0.4 cm for the column water vapour. The modulation of the downward surface irradiances is in opposition of phase with respect to aerosol optical depth and water vapour column variations. The perturbation of the downward irradiance produced by the aerosols is determined by comparing the measured irradiances with estimated irradiances at a fixed value of the aerosol optical depth, and by correcting for the effect of the water vapour in the shortwave spectral range. The direct radiative forcing efficiency, i.e., the radiative perturbation of the net surface irradiance produced by a unit of optical depth aerosol layer, is determined at different solar zenith angles as the slope of the irradiance perturbation versus the aerosol optical depth. The estimated direct surface forcing efficiency at about 60° solar zenith angle is −(181 ± 17) W m−2 in the shortwave, and −(83 ± 7) W m−2 in the photosynthetic spectral range. The estimated daily average forcing efficiencies are of about −79 and −46 W m−2 for the shortwave and photosynthetic spectral range, respectively
    corecore