125 research outputs found
A new mixed-mode fracture criterion for large-scale lattice models
Reasonable fracture criteria are crucial for the modeling of dynamic failure in computational lattice models. Successful criteria exist for experiments on the micro- and on the mesoscale, which are based on the stress that a bond experiences. In this paper, we test the applicability of these failure criteria to large-scale models, where gravity plays an important role in addition to the externally applied deformation. Brittle structures, resulting from these criteria, do not resemble the outcome predicted by fracture mechanics and by geological observations. For this reason we derive an elliptical fracture criterion, which is based on the strain energy stored in a bond. Simulations using the new criterion result in realistic structures. It is another great advantage of this fracture model that it can be combined with classic geological material parameters: the tensile strength Ď0 and the shear cohesion Ď0. The proposed fracture criterion is much more robust with regard to numerical strain increments than fracture criteria based on stress (e.g., DruckerâPrager). While we tested the fracture model only for large-scale structures, there is strong reason to believe that the model is equally applicable to lattice simulations on the micro- and on the mesoscale
Transport efficiency and dynamics of hydraulic fracture networks
Acknowledgments This study is carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 âMineral Vein Dynamics Modeling,â which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research programme of the WEG Wirtschaftsverband ErdĂśl- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish our results. We further acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of University of TĂźbingen.Peer reviewedPublisher PD
The Rwenzori Mountains, a Paleoproterzoic crustal shear belt crossing the Albertine rift system
This contribution discusses the development of the Paleoproterozoic Buganda-Toro belt in the Rwenzori mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal scale nappe whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle inverse faulting. The Paleoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori mountains are situated and where the lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori mountain and that this stiff belt may form part of the reason why the Rwenzori mountains are relatively high within the rift.
Keywords: East African Rift, Basement, Buganda Toro, Inverse Metamorphic Gradient, Microtectonics, Rwenzori mountain
Fracturing and Porosity Channeling in Fluid Overpressure Zones in the Shallow Earthâs Crust
At the time of energy transition, it is important to be able to predict the effects of fluid overpressures in different geological scenarios as these can lead to the development of hydrofractures and dilating high-porosity zones. In order to develop an understanding of the complexity of the resulting effective stress fields, fracture and failure patterns, and potential fluid drainage, we study the process with a dynamic hydromechanical numerical model. The model simulates the evolution of fluid pressure buildup, fracturing, and the dynamic interaction between solid and fluid. Three different scenarios are explored: fluid pressure buildup in a sedimentary basin, in a vertical zone, and in a horizontal layer that may be partly offset by a fault. Our results show that the geometry of the area where fluid pressure is successively increased has a first-order control on the developing pattern of porosity changes, on fracturing, and on the absolute fluid pressures that sustained without failure. If the fluid overpressure develops in the whole model, the effective differential and mean stress approach zero and the vertical and horizontal effective principal stresses flip in orientation. The resulting fractures develop under high lithostatic fluid overpressure and are aligned semihorizontally, and consequently, a hydraulic breccia forms. If the area of high fluid pressure buildup is confined in a vertical zone, the effective mean stress decreases while the differential stress remains almost constant and failure takes place in extensional and shear modes at a much lower fluid overpressure. A horizontal fluid pressurized layer that is offset shows a complex system of effective stress evolution with the layer fracturing initially at the location of the offset followed by hydraulic breccia development within the layer. All simulations show a phase transition in the porosity where an initially random porosity reduces its symmetry and forms a static porosity wave with an internal dilating zone and the presence of dynamic porosity channels within this zone. Our results show that patterns of fractures, hence fluid release, that form due to high fluid overpressures can only be successfully predicted if the geometry of the geological system is known, including the fluid overpressure source and the position of seals and faults that offset source layers and seals
How ice anisotropy contributes to fold and ice stream in large-scale ice-sheet models
Satellite and airborne sensors have provided detailed data on ice surface flow velocities, englacial structures of ice sheets and bedrock elevations. These data give insight into the flow behaviour of ice sheets and glaciers. One significant phenomenon observed is large-scale folds (over 100 m in amplitude) in the englacial stratigraphy in the Greenland ice sheet. A large population of folds is located at ice streams, where the flow is distinctly faster than in the surroundings, such as the North-East Greenland Ice Stream (NEGIS). While there is no consensus regarding the formation of large-scale folds, unraveling the underlying mechanisms presents significant potential for enhancing our understanding of the formation and dynamics of ice streams.
Ice in ice sheets is a ductile material, i.e., it can flow as a thick viscous fluid with a power-law rheology. Furthermore, ice is significantly anisotropic in its flow properties due to its crystallographic preferred orientation (CPO). Here, we use the Full-Stokes code Underworld2 (Mansour et al.,2022) for 3D modelling of the power-law and transversely isotropic ice flow, also in comparison with the isotropic ice models.
Our simulated folds with anisotropic ice show complex patterns on a bumpy bedrock, and are classified into three types: large-scale folds (fold amplitudes >100 m), small-scale folds (fold amplitudes <<100 m, wavelength <<km) and recumbent basal-shear folds. Our results indicate that bedrock topography contributes to perturbations in ice layers, and that ice anisotropy due to the CPO amplifies these into large-scale folds in convergent flow by horizontal shortening. As for our ice stream model, we simulate convergent flow as initial condition, which subsequently initiates the development of shear margins due to the rotation of the ice crystal basal planes. As soon as the shear margins develop, the ice stream starts to propagate upstream in a short time and narrows in the upstream part. Our modeling shows that the anisotropic rheology of ice and CPO change play a significant role for large-scale folding and for the initiation of ice streams with distinct shear margins. Hence, we promote the implementation of ice anisotropy in large-scale ice-sheet evolution models as it holds the potential to introduce novel perspectives to the glaciological community on the dynamics of ice flow
Study of fluidâstructure interaction with undulating flow using channel driven cavity flow system
17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.1007/s41939-021-00112-7Fluidâstructure interaction (FSI) induced by undulated flows was investigated using a channel driven cavity flow (CDCF) system. The bottom of the cavity section has a flexible plate made of either an aluminum alloy or carbon fiber composite, which interacts with flows in the cavity. Undulating flows were generated by controlling a series of solenoid valves programmed to interrupt the flow at various different frequencies from 0.5 to 1.25 Hz. Mean flow velocity was also varied for each given undulation frequency. The dynamic motion of the flexible test panel, made of aluminum alloy or carbon fiber composite, was measured for transverse deflections using laser displacement sensors. The study showed that the structural response was very dependent on the input flow. The plate vibrational modes had three to five dominant frequencies ranging from the undulated flow frequencies to about 5.0 Hz. Those frequencies were either at or very close to the multiples of the flow frequencies. The most dominant frequency was not always the same as the flow frequency, but it varied depending on the applied flow frequency.Office of Naval ResearchIdentified in text as U.S. Government work
Aktive Schallreduktion mit elektrostatischen Flachlautsprechern
In der vorliegenden Arbeit werden experimentelle Ergebnisse zur aktiven Schallreduktion mittels elektrostatischer Flachlautsprecher vorgestellt. Untersuchungsgegenstand ist ein Transmissionspr¨ufstand, der aus einem Hallraum und einem schallarmen Raum besteht und das Studium rein passiver Schalld¨ammungen sowie die IdentiďŹkation derer Schwachstellen erm¨oglicht. Zur Unterst¨utzung der passiven MaĂnahmen wird f¨ur kritische Frequenzen ein adaptiver Regler angepasst, der die Gegenschallquelle, einen im Transmissionsweg angeordneten elektrostatischen Flachlautsprecher, ansteuert. Die M¨oglichkeiten zur aktiven Unterst¨utzung einer lokalen Schallreduktion werden im Hinblick auf tonale St¨orungen diskutiert
Interaction between Crustal-Scale Darcy and Hydrofracture Fluid Transport: A Numerical Study
Crustal-scale fluid flow can be regarded as a bimodal transport mechanism. At low hydraulic head gradients, fluid flow through rock porosity is slow and can be described as diffusional. Structures such as hydraulic breccias and hydrothermal veins both form when fluid velocities and pressures are high, which can be achieved by localized fluid transport in space and time, via hydrofractures. Hydrofracture propagation and simultaneous fluid flow can be regarded as a 'ballistic' transport mechanism, which is activated when transport by diffusion alone is insufficient to release the local fluid overpressure. The activation of a ballistic system locally reduces the driving force, through allowing the escape of fluid. We use a numerical model to investigate the properties of the two transport modes in general and the transition between them in particular. We developed a numerical model in order to study patterns that result from bimodal transport. When hydrofractures are activated due to low permeability relative to fluid flux, many hydrofractures form that do not extend through the whole system. These abundant hydrofractures follow a power-law size distribution. A Hurst factor of ~0.9 indicates that the system self-organizes. The abundant small-scale hydrofractures organize the formation of large-scale hydrofractures that ascend through the whole system and drain fluids in large bursts. As the relative contribution of porous flow increases, escaping fluid bursts become less frequent, but more regular in time and larger in volume. We propose that metamorphic rocks with abundant veins, such as in the Kodiak accretionary prism (Alaska) and Otago schists (New Zealand), represent regions with abundant hydrofractures near the fluid source, while hydrothermal breccias are formed by the large fluid bursts that can ascend the crust to shallower levels
Paleogene initiation of the Western Branch of the East African Rift: The uplift history of the Rwenzori Mountains, Western Uganda
The two branches of the East African Rift System (EARS) are believed to have initiated diachronously. However, a growing body of work continues to suggest the onset of rifting in the Western Branch occurred in the Paleogene, coeval to the Eastern Branch. Due to a lack of pre-Miocene stratigraphy, attempts to resolve the geological history of the Western Branch must study the uplift and erosional histories of the modern rift topography. In this study, the rock uplift history of the Rwenzori Mountains, Western Uganda, is resolved to better our understanding of the tectonic history of the Western Branch of the EAR. Through the application of low-temperature thermochronology, Ď-mapping and the modelling of river profiles, we show that rock uplift of the Rwenzori dates back to the Oligocene, with thermal history models suggesting uplift induced exhumation may date back as far as the Eocene. This provides tangible evidence that extension began in the region in the Paleogene, coeval with the Eastern Branch, and not the late Neogene. These results have broad implications for the tectonic evolution of the entire East African Rift System and suggest our current understanding of the region's rift history remains incomplete
- âŚ