27 research outputs found

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects

    KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference

    Get PDF
    Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 × 10−12). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver–brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.</p

    KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference.

    Get PDF
    Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 × 10(-12)). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption
    corecore