15,917 research outputs found
Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate
Helical spin textures in a Rb F=1 spinor Bose-Einstein condensate are
found to decay spontaneously toward a spatially modulated structure of spin
domains. This evolution is ascribed to magnetic dipolar interactions that
energetically favor the short-wavelength domains over the long-wavelength spin
helix. This is confirmed by eliminating the dipolar interactions by a sequence
of rf pulses and observing a suppression of the formation of the short-range
domains. This study confirms the significance of magnetic dipole interactions
in degenerate Rb F=1 spinor gases
DRASTIC—INSIGHTS:querying information in a plant gene expression database
DRASTIC––Database Resource for the Analysis of Signal Transduction In Cells (http://www.drastic.org.uk/) has been created as a first step towards a data-based approach for constructing signal transduction pathways. DRASTIC is a relational database of plant expressed sequence tags and genes up- or down-regulated in response to various pathogens, chemical exposure or other treatments such as drought, salt and low temperature. More than 17700 records have been obtained from 306 treatments affecting 73 plant species from 512 peer-reviewed publications with most emphasis being placed on data from Arabidopsis thaliana. DRASTIC has been developed by the Scottish Crop Research Institute and the Abertay University and allows rapid identification of plant genes that are up- or down-regulated by multiple treatments and those that are regulated by a very limited (or perhaps a single) treatment. The INSIGHTS (INference of cell SIGnaling HypoTheseS) suite of web-based tools allows intelligent data mining and extraction of information from the DRASTIC database. Potential response pathways can be visualized and comparisons made between gene expression patterns in response to various treatments. The knowledge gained informs plant signalling pathways and systems biology investigations
Coherence-enhanced imaging of a degenerate Bose gas
We present coherence-enhanced imaging, an in situ technique that uses Raman
superradiance to probe the spatial coherence properties of an ultracold gas.
Applying this method, we obtain a spatially resolved measurement of the
condensate number and more generally, of the first-order spatial correlation
function in a gas of Rb atoms. We observe the enhanced decay of
propagating spin gratings in high density regions of a Bose condensate, a decay
we ascribe to collective, non-linear atom-atom scattering. Further, we directly
observe spatial inhomogeneities that arise generally in the course of extended
sample superradiance.Comment: 4 pages, 4 figure
Generalised linear mixed model analysis via sequential Monte Carlo sampling
We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chainMonte Carlo (MCMC). The SequentialMonte Carlo sampler (SMC) is a new and generalmethod for producing samples from posterior distributions. In thisarticle we demonstrate use of the SMC method for performing inference for GLMMs. We demonstrate the effectiveness of the method on both simulated and real data, and find that sequential Monte Carlo is a competitive alternative to the available MCMC techniques. © 2008, Institute of Mathematical Statistics. All rights reserved
Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation
Procedures for time-ordering the covariance function, as given in a previous
paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended
and used to show that the response function associated at second order with the
Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber)
energy balance. These time-ordering procedures also allow the two-time
formulation to be reduced to time-independent form by means of exponential
approximations and it is verified that the response equation does not have an
infra-red divergence at infinite Reynolds number. Lastly, single-time
Markovianised closure equations (stated in the previous paper above) are
derived and shown to be compatible with the Kolmogorov distribution without the
need to introduce an ad hoc constant.Comment: 12 page
Periodic spin textures in a degenerate F=1 Rb spinor Bose gas
We report on the spin textures produced by cooling unmagnetized Rb F=1
spinor gases into the regime of quantum degeneracy. At low temperatures,
magnetized textures form that break translational symmetry and display
short-range periodic magnetic order characterized by one- or two-dimensional
spatial modulations with wavelengths much smaller than the extent of the
quasi-two-dimensional degenerate gas. Spin textures produced upon cooling spin
mixtures with a non-zero initial magnetic quadrupole moment also show
ferromagnetic order that, at low temperature, coexists with the spatially
modulated structure.Comment: 6 pages, revised substantially following reviewer comments and
further analysi
The Metallicity and Reddening of Stars in the Inner Galactic Bulge
We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs)
for 7 different positions on or close to the minor axis of the Milky Way at
Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the
(linear) giant branches in these CMDs we derive a dependence of on
latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033
dex/degree. When combined with the data from Tiede et al. we find for
-0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012
dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034
\pm 0.053 dex. We also derive average values for the extinction in the K band
(A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to
average values of E(J-K) of between 3.46 and 0.44. There is a well defined
linear relation between the average extinction for a field and the star-to-star
scatter in the extinction for the stars within each field. This result suggests
that the typical apparent angular scale size for an absorbing cloud is small
compared with the field size (90\arcsec on a side). Finally, from an
examination of the luminosity function of bright giants in each field we
conclude that the young component of the stellar population observed near the
Galactic center declines in density much more quickly than the overall bulge
population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains
the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.
Direct, Non-Destructive Imaging of Magnetization in a Spin-1 Bose Gas
Polarization-dependent phase-contrast imaging is used to spatially resolve
the magnetization of an optically trapped ultracold gas. This probe is applied
to Larmor precession of degenerate and nondegenerate spin-1 Rb gases.
Transverse magnetization of the Bose-Einstein condensate persists for the
condensate lifetime, with a spatial response to magnetic field inhomogeneities
consistent with a mean-field model of interactions. Rotational symmetry implies
that the Larmor frequency of a spinor condensate be density-independent, and
thus suitable for precise magnetometry with high spatial resolution. In
comparison, the magnetization of the noncondensed gas decoheres rapidly.Comment: 4 pages, 4 figure
- …
