24,925 research outputs found

    Efficient generation of graph states for quantum computation

    Full text link
    We present an entanglement generation scheme which allows arbitrary graph states to be efficiently created in a linear quantum register via an auxiliary entangling bus. The dynamics of the entangling bus is described by an effective non-interacting fermionic system undergoing mirror-inversion in which qubits, encoded as local fermionic modes, become entangled purely by Fermi statistics. We discuss a possible implementation using two species of neutral atoms stored in an optical lattice and find that the scheme is realistic in its requirements even in the presence of noise.Comment: 4 pages, 3 figures, RevTex 4; v2 - Major changes and new result

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum

    Unparticle inspired corrections to the Gravitational Quantum Well

    Full text link
    We consider unparticle inspired corrections of the type (RGr)β{(\frac{R_{G}}{r})}^\beta to the Newtonian potential in the context of the gravitational quantum well. The new energy spectrum is computed and bounds on the parameters of these corrections are obtained from the knowledge of the energy eigenvalues of the gravitational quantum well as measured by the GRANIT experiment.Comment: Revtex4 file, 4 pages, 2 figures and 1 table. Version to match the one published at Physical Review

    Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery

    Full text link
    The observation of a new boson of mass \sim 125\gev at the CERN LHC may finally have revealed the existence of a Higgs boson. Now we have the opportunity to scrutinize its properties, determining its quantum numbers and couplings to the standard model particles, in order to confirm or not its discovery. We show that by the end of the 8 TeV run, combining the entire data sets of ATLAS and CMS, it will be possible to discriminate between the following discovery alternatives: a scalar JP=0+J^P=0^+ or a tensor JP=2+J^P=2^+ particle with minimal couplings to photons, at a 5σ5\sigma statistical confidence level at least, using only diphotons events. Our results are based on the calculation of a center-edge asymmetry measure of the reconstructed {\it sPlot} scattering polar angle of the diphotons. The results based on asymmetries are shown to be rather robust against systematic uncertainties with comparable discrimination power to a log likelihood ratio statistic.Comment: 11 pages, 6 figures, 1 table. References added, minor typos correcte

    3D gravity and non-linear cosmology

    Full text link
    By the inclusion of an additional term, non-linear in the scalar curvature RR, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in RR can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.Comment: 7 pages, to appear in Mod. Phys. Let

    Error threshold in the evolution of diploid organisms

    Full text link
    The effects of error propagation in the reproduction of diploid organisms are studied within the populational genetics framework of the quasispecies model. The dependence of the error threshold on the dominance parameter is fully investigated. In particular, it is shown that dominance can protect the wild-type alleles from the error catastrophe. The analysis is restricted to a diploid analogue of the single-peaked landscape.Comment: 9 pages, 4 Postscript figures. Submitted to J. Phy. A: Mat. and Ge
    • …
    corecore