132 research outputs found

    Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis

    Get PDF
    Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    BACKGROUND AIMS: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. METHODS: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response ("responders"), 16 PBC patients with inadequate UDCA response ("nonresponders"), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes ("modules") associated with response status and the most highly connected genes ("hub genes") within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation ("latent factors") across all peripheral blood mononuclear cell subsets. RESULTS: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q<0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. CONCLUSIONS: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis

    Get PDF
    Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    BACKGROUND AIMS: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. METHODS: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response ("responders"), 16 PBC patients with inadequate UDCA response ("nonresponders"), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes ("modules") associated with response status and the most highly connected genes ("hub genes") within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation ("latent factors") across all peripheral blood mononuclear cell subsets. RESULTS: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q<0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. CONCLUSIONS: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    Copyright \ua9 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Association for the Study of Liver Diseases.Background &amp; Aims: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. Methods: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response (“responders”), 16 PBC patients with inadequate UDCA response (“nonresponders”), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes (“modules”) associated with response status and the most highly connected genes (“hub genes”) within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation (“latent factors”) across all peripheral blood mononuclear cell subsets. Results: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q &lt; 0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. Conclusions: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis

    Get PDF
    These guidelines on the management of primary sclerosing cholangitis (PSC) were commissioned by the British Society of Gastroenterology liver section. The guideline writing committee included medical representatives from hepatology and gastroenterology groups as well as patient representatives from PSC Support. The guidelines aim to support general physicians, gastroenterologists and surgeons in managing adults with PSC or those presenting with similar cholangiopathies which may mimic PSC, such as IgG4 sclerosing cholangitis. It also acts as a reference for patients with PSC to help them understand their own management. Quality of evidence is presented using the AGREE II format. Guidance is meant to be used as a reference rather than for rigid protocol-based care as we understand that management of patients often requires individual patient-centred considerations

    Factors Associated With Outcomes of Patients With Primary Sclerosing Cholangitis and Development and Validation of a Risk Scoring System.

    Get PDF
    We sought to identify factors that are predictive of liver transplantation or death in patients with primary sclerosing cholangitis (PSC), and to develop and validate a contemporaneous risk score for use in a real-world clinical setting. Analyzing data from 1,001 patients recruited to the UK-PSC research cohort, we evaluated clinical variables for their association with 2-year and 10-year outcome through Cox-proportional hazards and C-statistic analyses. We generated risk scores for short-term and long-term outcome prediction, validating their use in two independent cohorts totaling 451 patients. Thirty-six percent of the derivation cohort were transplanted or died over a cumulative follow-up of 7,904 years. Serum alkaline phosphatase of at least 2.4 × upper limit of normal at 1 year after diagnosis was predictive of 10-year outcome (hazard ratio [HR] = 3.05; C = 0.63; median transplant-free survival 63 versus 108 months; P < 0.0001), as was the presence of extrahepatic biliary disease (HR = 1.45; P = 0.01). We developed two risk scoring systems based on age, values of bilirubin, alkaline phosphatase, albumin, platelets, presence of extrahepatic biliary disease, and variceal hemorrhage, which predicted 2-year and 10-year outcomes with good discrimination (C statistic = 0.81 and 0.80, respectively). Both UK-PSC risk scores were well-validated in our external cohort and outperformed the Mayo Clinic and aspartate aminotransferase-to-platelet ratio index (APRI) scores (C statistic = 0.75 and 0.63, respectively). Although heterozygosity for the previously validated human leukocyte antigen (HLA)-DR*03:01 risk allele predicted increased risk of adverse outcome (HR = 1.33; P = 0.001), its addition did not improve the predictive accuracy of the UK-PSC risk scores. Conclusion: Our analyses, based on a detailed clinical evaluation of a large representative cohort of participants with PSC, furthers our understanding of clinical risk markers and reports the development and validation of a real-world scoring system to identify those patients most likely to die or require liver transplantation.Financial support has been received by National Institute of Health Research (RD-TRC and Birmingham Biomedical Research Centre), Isaac Newton Trust, Addenbrooke’s charitable trust, Norwegian PSC Research Center and PSC Support. GMH is supported by the Lily and Terry Horner Chair in Autoimmune Liver Disease Research, Toronto Centre for Liver Disease, Toronto

    ‘Placing’ Space: exploring the socio-spatial impacts of cosmopolitan place-marketing approaches on British migrants in Spain

    Get PDF
    This article explores the sociospatial underpinnings of cosmopolitan place-marketing narratives and their impacts on British migrants living in Sitges, an affluent tourist town in Spain. Sitges’ place-marketing suggests that moving there automatically fosters a cosmopolitan identity. For British migrants in Sitges, this was understood to be exemplified through integration into the local community. Yet the vast majority found such integration impossible, not least because this conceptualization of cosmopolitanism overlooked the subjectivity of locals themselves, by whom they were most often rejected. It is argued that this mismatch between British migrants’ experiences and Sitges’ cosmopolitan place-marketing occurs because it relies on an understanding of subjective identity as generated locationally, enacted via movement to a specific “type” of place that incorporates particular understandings of space, place, and culture in relation to that identity. This overrides the necessity of relationality, undermining the ideal of reflexive identity-making on which cosmopolitan place-marketing narratives rely
    corecore