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ABSTRACT
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) 
as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, 
but the underlying mechanisms are unclear. UDCA modulates the composition of primary and 
bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA 
and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) 
treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response 
criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid 
Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene 
sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with 
persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs 
than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic 
acid, which was higher in responders. The sub-group of responders with poor liver function showed 
lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other 
groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, 
Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated 
with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is 
a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria 
with BA deconjugation capacity might be associated with an incomplete response to treatment in 
some patients.
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Introduction

Primary biliary cholangitis (PBC) is a chronic chole
static liver disease, characterized by biliary epithelial 
cell (BEC) stress, injury, and loss. The condition 
affects approximately 35 people per 100,000 in the 
UK,1 and lifestyle-related factors like higher BMI have 

been associated with disease progression.2–4 Bile acids 
(BAs) play a key role in both PBC pathogenesis and 
treatment; hydrophobic BAs are thought to contri
bute to BEC stress and injury, and therapy 
approaches that reduce or modify toxic BAs lie at 
the heart of current disease management strategies.
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The first-line treatment approach for PBC cur
rently is oral administration of ursodeoxycholic 
acid (UDCA), a hydrophilic secondary BA that 
improves serum biochemical markers of liver 
damage and can delay disease progression. UDCA 
response is not, however, universal and patients 
with a sub-optimal response need second-line 
therapies such as obeticholic acid. Despite the key 
role played by “non-response” to UDCA in treat
ment strategy decision-making, the reasons for this 
state of inadequate response have received little 
attention and the mechanisms are currently poorly 
understood. The concept of UDCA (non-)response 
is in itself complex, with a number of identified and 
validated criteria, based on degrees of serum bio
chemical markers abnormality after UDCA 
therapy.5 Consequently, many patients deemed to 
be UDCA responders actually have ongoing serum 
biochemical abnormalities, albeit at a level below 
the defined response threshold. This disease strati
fication in itself has been challenged with recent 
data suggesting that any ongoing biochemical 
abnormality in circulating liver markers entails 
increased risk of progression.6

Our ability to treat PBC optimally would be 
greatly facilitated by an increase in our under
standing as to the true nature of both non- 
response to UDCA and the mechanisms of partial 
response. While the word “response” has been 
used to classify patients across different criteria, 
it is important to distinguish when the goal is to 
dynamically assess within-patient biomarker 
levels post-treatment compared to pre- 
treatment, or when the term “response” relates 
to assessment of disease prognosis in 
a population, in which case only post-treatment 
biomarker levels are considered as part of the 
criteria. Response criteria that consider within- 
individual biomarker longitudinal changes, such 
as the Barcelona or Nara criteria,7,8 are particu
larly suited to understanding the lack of dynamic 
response to treatment, while criteria that do not 
account for pre-treatment levels, such as the 
Toronto criteria,9 are more suited to predict dis
ease prognosis. Due to this subtle but important 
difference, in this work we will refer to dynamic 
or prognostic response criteria accordingly.

Bile acids undergo enterohepatic circulation and 
are exposed to the gut micro-environment. The 

contribution of the gut microbiota to cholestatic 
diseases is being increasingly investigated, as evi
dence of the strong crosstalk between BA metabo
lism and gut microbiota mounts.10,11 This crosstalk 
is particularly true in the case of primary sclerosing 
cholangitis (PSC), for which there is a high co- 
morbidity with inflammatory bowel disease 
(IBD).12 In PBC, Pseudomonas and Sphingomonas 
genera and their corresponding family and order 
taxa were more abundant in the terminal ileum 
mucosa of patients treated with UDCA compared 
to a group without PBC;13 fecal bacterial composi
tion was associated with genetic variants of the 
human leukocyte antigen in a Chinese cohort of 
patients with PBC;14 and one study showed lower 
bacterial richness and different bacterial composi
tion in patients compared to healthy controls, 
which was partially reversed by treatment with 
UDCA.15 These findings, while on a relatively 
small cohort of patients, suggest that further 
research is needed to uncover within-individual 
mechanisms of treatment response and assess 
whether a gut-liver axis could be exploited for 
a better disease management in PBC.

The UK-PBC cohort, established in 2007, is one 
of the largest cohorts of PBC patients assembled to 
date. The cohort remains a unique and important 
resource to identify new disease risk, progression 
and treatment response biomarkers that could later 
be validated in subsequent mechanistic studies.16 

In previous works, we characterized genomic and 
serum proteomic signatures associated with disease 
status and prognostic response criteria.17,18 Here, 
we assess the relationship between BAs and gut 
bacterial composition in 419 patients of the UK- 
PBC cohort to investigate differences between 
UDCA dynamic responders and non-responders.

Results

PBC patients respond differently to UDCA

Different static prognostic and dynamic 
response criteria have been developed for PBC, 
based on absolute levels or improvement of 
biomarkers of liver function in blood respec
tively, which determine the status of response 
to treatment with UDCA. In this study, we 
initially focused on the dynamic response to 
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treatment in a UK-PBC sub-cohort of patients 
affected with PBC and taking UDCA for at least 
1 year. Patients with either a decrease in alkaline 
phosphatase (ALP) >40% of pre-treatment 
values or normal levels after at least 1 year of 
treatment with UDCA were classified as respon
ders (R) for the current study (Barcelona 
criteria).7 Patients with ongoing elevation of 
alkaline phosphatase and who had not shown 
a 40% reduction with UDCA therapy were clas
sified as non-responders (NR).

Application of the Barcelona criteria to our study 
cohort resulted in identification of 191 non- 
responders (NR) and 228 responders (R) to 
UDCA. The responders had significantly lower 
levels of serum bilirubin (T-test P = 0.024), but no 
difference in serum albumin (T-test P = 0.094). Of 
the 228 responders using the Barcelona criteria, 212 
were also responders using the most widely used 
static “good prognosis” cutoff of an absolute alkaline 
phosphatase level after UDCA therapy of <1.67× 
ULN (the threshold for response in the Toronto/ 
POISE prognostic criteria9). The remaining 16 
showed, however, a positive response in terms of 
the dynamic criterion (>40% reduction in alkaline 
phosphatase) whilst their alkaline phosphatase value 
remained >1.67× ULN putting them, paradoxically, 
simultaneously also into a bad prognosis group 
(Figure 1a; see Methods). Interestingly, while there 
were no significant differences in treatment dose or 
duration in this group (Table 1), these individuals 
had lower serum albumin and higher serum alanine 
transaminase and bilirubin concentrations; features 
which are associated with worse disease 
progression,5 as well as a higher mean age and 
a higher proportion of individuals co-treated with 
bile acid sequestrants. We were interested in explor
ing the biological basis of this group with an appar
ently mixed response to UDCA. Given their distinct 
circulating liver biomarker profile, we named this 
subset of responders “responders with bad prog
nosis” (R_BP) and investigated whether their differ
ent response to treatment was associated with 
specific metabolic or bacterial phenotypes.

Variability of metabolite and gut bacteria profiles

To interpret the data, sources of variability in the 
datasets were investigated. Unsupervised Principal 

Component Analysis (PCA) did not show strong 
clusters according to treatment response or serum 
ALP concentration (Figure 1b and Supplementary 
Figure S1), but there was an increasing BMI gradient 
along the first component for taxonomy and fecal 
BAs. Patient geographical area was the main source 
of variation across all datasets (Figure 1c) but was 
only significant for fecal and serum BAs after adjust
ing for false discovery rate (FDR; 10% FDR adjusted 
P-value (Padj) <0.1). As expected, we identified many 
sources of variation for bacterial composition: age, 
sex, BMI, antibiotics, smoking and proton pump 
inhibitors (PPI), while bile acid sequestrants con
tributed to the variation in fecal bile acids.

Fecal and urine bile acids are associated with UDCA 
response

First, we compared fecal BA profiles across the 
three study groups (R, NR and R_BP). The 
responders showed higher levels of 12 fecal bile 
acids compared to the non-responders (Figure 2 
and Supplementary Table S1). These included the 
bacterial-derived secondary BAs deoxycholic acid 
(DCA: β = 0.093; 95% CI [0.0026,0.18]) and litho
cholic acid (LCA: β= −0.015; 95% CI 
[−0.089,0.058]). Taurine-conjugated UDCA 
(T-UDCA) was significantly higher in responders 
(β = 0.14; 95% CI [0.015,0.27]), despite there 
being no significant differences in treatment 
dose between responders and non-responders 
(Table 1). One of the mechanisms by which 
UDCA exerts its beneficial effects is by decreasing 
BAs intestinal absorption.19 We found a higher 
abundance of glycine-conjugated BAs (G-BAs) 
summed intensities in the feces of responders (β  
= 0.11; 95% CI [0.04,0.18]), while total BA relative 
abundance – comprising the sum of intensities of 
all annotated conjugated and unconjugated spe
cies – remained similar across groups. 
Interestingly, a completely opposite pattern was 
seen in the paradoxical R_BP group with - in 
contrast to the elevated levels of fecal BAs seen 
in the conventional responders - reduction of all 
12 of the bile acids compared to non-responders 
(DCA: β= −0.27; 95% CI [−0.49,-0.044], LCA: β= 
−0.26; 95% CI [−0.44,-0.077]) (Figure 2 and 
Supplementary Table S1).
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We also compared fecal BA differences across 
response groups after adjusting for bile acid 
sequestrant intake, which we identified as 
a potential source of variability in the fecal meta
bolome (Figure 1c). The same trends were still 
observed in 5 out of the 12 BAs, with 
a significantly higher abundance of DCA and 
G-BAs in R, and a lower abundance of the second
ary bile acid DCA and tertiary bile acid tauro- 
hyodeoxycholic acid (an LCA hepatic metabolite) 
in R_BP with respect to NR (Supplementary Figure 
S2 and Supplementary Table S1).

In urine, summed conjugated and unconju
gated abundance of UDCA, G-BAs and another 
six BAs, specifically glycine-conjugated forms of 
the primary bile acid chenodeoxycholic acid 
(CDCA), DCA and taurine- or glycine- 
conjugated UDCA, were higher in non- 
responders than both responder groups. There 
were no differences in urine creatinine levels 
across groups (One-Way ANOVA P = 0.81; 
Supplementary Figure S2), indicating that the 
higher levels of these bile acids in non- 
responders might be independent of kidney 

Figure 1. Dynamic response to UDCA treatment varies across patients. a) Box-and-whisker plots of serum markers in non-responders 
(NR; n = 191) and responders (R; n = 228) according to the Barcelona criteria and indicating the newly identified subgroup of 
responders with bad prognosis (R_BP; n = 16) with a dashed square. b) PCA scores of clr-transformed ASV abundances (n = 380). c) 
PERMANOVA variation (R2) percentage attributed to each factor, with corresponding Benjamini-Hochberg adjusted P-value (Padj) 
indicated within each cell. n = 380 taxonomy; 366 serum; 362 feces; 400 urine. ALP: alkaline phosphatase; APAP: acetaminophen 
(paracetamol); BA: bile acid; PPI: proton pump inhibitor; UDCA: ursodeoxycholic acid.
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function or other factors that could affect urin
ary excretion. In contrast to the other assessed 
bile acids, 12-dehydrocholic acid (12-DHCA) 
was specifically elevated in the urine of respon
ders compared to non-responders (β = 0.21; 95% 

CI [0.051,0.37]; Figure 2 and Supplementary 
Table S2).

Finally, no differences in serum BAs or fecal short 
chain fatty acids (SCFAs) were found between 
groups (Supplementary Tables S3 and S4).

Table 1. Cohort Characteristics.
Total 

N = 419
NR 

N = 191 (45.6%)
R 

N = 212 (50.6%)
R_BP 

N = 16 (3.8%) P

Sex N (%)
Female 374 (89.3) 172 (90.1) 188 (88.7) 14 (87.5) 0.778
Male 45 (10.7) 19 (9.9) 24 (11.3) 2 (12.5)
Age (y) 
Mean (SD) 63.42 (10.31) 61.97 (10.69) 64.47 (9.99) 66.81 (7.70) 0.021
Age at diagnosis 
(y) 
Mean (SD)

53.39 
(10.3)

52.29 
(10.72)

54.33 
(9.99)

53.93 
(7.99)

0.135

BMI 
Mean (SD) 28.13 (6.14) 27.62 (6.12)

28.68 (6.23) 27.01 (4.58)
0.172

AMA N (%) 
Negative 
Positive

31 (9.0) 
312 (91.0)

16 (10.5) 
136 (89.5)

13 (7.4) 
163 (92.6)

2 (13.3) 
13 (86.7)

0.401

Alkaline phosphatase (U/L) 
Mean (SD) 181.73 (144.11) 257.16 (173.14) 104.15 (29.45) 309.31 (109.03) <0.001
Bilirubin (μmol/L) 
Mean (SD) 11.72 (10.00) 13.07 (13.33) 10.41 (5.53) 13.12 (7.85) 0.018
Albumin (g/L) 
Mean (SD) 40.59 (4.57) 40.17 (4.85) 41.11 (4.24) 38.62 (4.54) 0.026
Alanine transaminase(U/L) 
Mean (SD) 37.84(29.14) 46.69(34.04) 28.89 (20.46) 50.12 (28.13) <0.001
Platelet count(x109/L) 
Mean (SD) 255.24 (97.69) 264.46 (115.78) 250.17 (77.81) 211.50 (81.51) 0.273
UDCA dose (mg/Kg/day) 
Mean (SD) 12.69 (3.56) 13.15 (3.58) 12.30 (3.46) 12.37 (4.19) 0.054
UDCA (y) 
Mean (SD) 9.45 (6.29) 9.17 (6.09) 9.44 (6.40) 12.93 (6.60) 0.076
Sequestrants N (%) 
No 397 (94.7) 178 (93.2) 206 (97.2) 13 (81.2) 0.018
Yes 22 (5.3) 13 (6.8) 6 (2.8) 3 (18.8)
Antibiotics N (%) 
No 339 (80.9) 150 (78.5) 177 (83.5) 12 (75.0) 0.317
Yes 80 (19.1) 41 (21.5) 35 (16.5) 4 (25.0)
APAP N (%) 
No 395 (94.3) 181 (94.8) 199 (93.9) 15 (93.8) 0.81
Yes 24 (5.7) 10 (5.2) 13 (6.1) 1 (6.2)
Statins N (%) 
No 356 (85.0) 164 (85.9) 179 (84.4) 13 (81.2) 0.804
Yes 63 (15.0) 27 (14.1) 33 (15.6) 3 (18.8)
PPI N (%) 
No 288 (68.7) 141 (73.8) 138 (65.1) 9 (56.2) 0.089
Yes 131 (31.3) 50 (26.2) 74 (34.9) 7 (43.8)
Alcohol N (%) 
Abstinent 140 (33.4) 64 (33.5) 71 (33.5) 5 (31.2) 0.983
Moderate 254 (60.6) 115 (60.2) 128 (60.4) 11 (68.8)
Excess 25 (6.0) 12 (6.3) 13 (6.1) 0 (0.0)
Smoking N (%) 
Never 157 (37.5) 77 (40.3) 75 (35.4) 5 (31.2) 0.829
Former 224 (53.5) 98 (51.3) 116 (54.7) 10 (62.5)
Current 38 (9.1) 16 (8.4) 21 (9.9) 1 (6.2)
Autoimmune diseases N (%) 
Any 105 (25.1) 40 (20.9) 59 (27.8) 6 (37.5) 0.128
Celiac 8 (1.9) 4 (2.1) 2 (0.9) 2 (12.5) 0.025

Significance across treatment response groups was assessed by Fisher’s Exact Test for categorical variables. One-Way ANOVA was used for normally distributed 
continuous variables (age, BMI, albumin, UDCA dose, and log10-transformed alkaline phosphatase, bilirubin, alanine transaminase and platelet count) and 
Kruskal-Wallis was used for UDCA treatment years. AMA: anti-mitochondrial antibody; APAP: acetaminophen (paracetamol); NR: non-responder; PPI: proton 
pump inhibitor; R: responder; R_BP: responder with bad prognosis; UDCA: ursodeoxycholic acid.
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Bacterial composition differs in 
confounder-matched samples

We identified 9,865 amplicon sequence variants 
(ASVs), of which only 447 were present in at 
least 10% of specimens. Responders had 
a similar alpha-diversity to non-responders, 
while R_BP had a lower Shannon and Simpson 
evenness (Figure 3a and Supplementary 
Table S5).

Differential abundance analysis between 
response groups was done using ANCOMBC 
omnibus and pairwise tests.20 The omnibus test 
showed genus Sellimonas was differently abundant 
across the three groups, with highest mean abun
dance in NR and lowest in R_BP, and the pairwise 
comparisons identified an order with placeholder 
name ML615J–28, from the Bacilli class, which was 

significantly lower in R_BP compared to non- 
responders (Supplementary Tables S6 and S7).

Given the different sources of variability affect
ing microbial composition identified in our 
cohort and by others,21 and the characteristics of 
the R_BP group, we applied ANCOMBC on 
a subset of samples matched by confounders (see 
Methods), comparing only individuals with simi
lar characteristics (sex, age, BMI, sequestrants, 
smoking, PPI, antibiotics and hospital) to R_BP 
(Supplementary Table S8). The omnibus test on 
the matched subset detected differences in three 
ASVs, two genera, one family, three orders, three 
classes and the phylum Desulfobacterota 
(Figure 3b and Supplementary Table S9). 
Specifically, dynamic responders had the highest 
abundance of Desulfobacterota, its order 
Desulfovibrionales and a Mediterraneibacter- 
assigned ASV, and lowest abundance of 
Clostridia and Saccharimonadia, while non- 
responders had higher abundance of 
Coriobacteriia, and lower abundance of 
Monoglobales and Tissierellales. Dynamic respon
ders with bad prognosis (R_BP) had the lowest 
abundance of Coriobacteriia and highest abun
dance of Monoglobales and Tissierellales. Pairwise 
results showed that compared to R_BP, respon
ders also had lower abundance of Veillonellaceae 
family and higher abundance of phyla 
Verrucomicrobiota and Actinobacteriota (now 
named Actinomycetota), and non-responders had 
lower abundance of order Staphylococcales 
(Figure 3c and Supplementary Table S10).

Abundance of significant taxonomic features 
was associated with fecal and urine bile acid inten
sities differing across response groups (Figure 4). 
Phyla Desulfobacterota and Verrucomicrobiota, 
higher in R_BP-matched responders, anti- 
correlated with fecal T-UDCA intensity, while 
Actinobacteriota positively correlated with 
a secondary bile acid derived from cholic acid: 3α- 
hydroxy-7,12-diketocholanic acid, where the 7-OH 
and 12-OH groups had been oxidized by action of 
7α- and 12α-hydroxysteroid dehydrogenases. 
Instead, less abundant taxa in matched responders 
such as Clostridia, Saccharimonadia or 
Veillonellaceae, positively correlated with 
T-UDCA and negatively correlated with LCA. 
Similarly, Veillonellaceae correlated with CDCA 

Figure 2. Bile acids in feces and urine differ with UDCA response. 
Regression coefficients of significantly different fecal (top) and 
urine (bottom) bile acids according to UDCA response, with non- 
responders as reference category. P-values were determined 
using a likelihood ratio test of nested models and adjusted 
using Benjamini-Hochberg, with a 10% false discovery rate 
threshold (Padj<0.1). n = 362 feces (163 NR; 184 R; 15 R_BP); n  
= 400 urine (183 NR; 201 R; 16 R_BP). NR: non-responder; R: 
responder; R_BP: responder with bad prognosis.
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and UDCA bile acids in urine, while an ASV 
assigned to the genus Mediterraneibacter negatively 
correlated with 12-DHCA.

Discussion

Lack of response to UDCA treatment in PBC is 
associated with a significantly increased risk of 
progression to cirrhosis, liver transplantation and 
lower survival. Despite its importance as a clinical 
challenge, the mechanisms underlying UDCA non- 
response are poorly understood. We explored 
metabolic and bacterial differences in a cohort of 
419 UDCA-treated patients, 46% of whom had not 
responded to treatment when assessed using 

dynamic response criteria. In addition, we identi
fied a subgroup of patients who had responded to 
treatment according to the Barcelona dynamic cri
teria, but paradoxically failed to reduce ALP levels 
to less than 1.67 × ULN (R_BP group), and 
hypothesized that their phenotype might be differ
ent to other dynamic responders. Our data led us to 
conclude there are relevant metabolic and bacterial 
differences between UDCA responders and non- 
responders, suggesting that the gut micro- 
environment may play an important role in deter
mining the response to UDCA. The responder with 
bad-prognosis group had, however, a strikingly dif
ferent phenotype compared to the main responder 
group. The identification of this group may allow 

Figure 3. Bacterial differences in unmatched and matched groups. a) Alpha diversity measures in response groups. Richness was not 
significantly different, while Shannon and Simpson were significantly lower in R_BP. P-values were determined using a likelihood ratio 
test of nested mixed models as specified in Methods, and adjusted using Benjamini-Hochberg, with a 10% false discovery rate 
threshold (Padj<0.1). n = 380 (169 NR; 196 R; 15 R_BP). Padj = 0.019 Shannon; Padj = 2.03e-06 Simpson. b) Significant taxa in R_BP- 
matched subset, determined with ANCOMBC omnibus test. n = 42 (14 NR; 13 R; 15 R_BP). Heatmap shows the log-transformed counts 
adjusted by sampling fraction determined by the ANCOMBC algorithm, with white color corresponding to the overall median of the 
represented counts. c) Significant taxa in R_BP-matched subset, determined with ANCOMBC pairwise test, with R_BP group as 
reference category. Values are log-fold change abundances with respect to the reference category. n = 42 (14 NR; 13 R; 15 R_BP). NR: 
non-responder; R: responder; R_BP: responder with bad prognosis.
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us to dissect out the various components of the 
process of response to UDCA.

Fecal bile acids demonstrated a different signa
ture across responses (Figures 2 and 5). Dynamic 
responders with bad prognosis (R_BP) excreted 
less unconjugated secondary BAs DCA and LCA 
and their downstream derivates such as isoDCA 
and T-hyoDCA than non-responders, signifying 
that R_BP might have lower BA deconjugation 
capacity by bacterial bile salt hydrolases (Bsh), 
together with lower capacity for 7α/β- 
dehydroxylation reactions as well (Figure 5). 
Consistent with this hypothesis, we found lower 
abundance of phyla that harbor the bsh gene in 
R_BP than R, namely Desulfobacterota, 
Verrucomicrobiota and Actinobacteriota/ 
Actinomycetota (Figure 3). Responders had higher 
relative abundance of fecal glycine-conjugated BAs 
and taurine-conjugated UDCA, indicating higher 
hepatic re-conjugation and excretion, reflective of 
an improvement of cholestasis and liver function. 
T-UDCA is a known anti-inflammatory chemical 
chaperone,22 so a higher presence in the liver of 

responders could contribute to the tissue healing 
process. In addition, since G-BAs are more hydro
phobic than T-BAs (hence considered more toxic 
for the hepatic parenchyma and biliary ducts23), 
the reduced excretion of G-BAs in NR and R_BP 
patients could expose them to persistently higher 
toxic BA species and tissue damage. Another factor 
indicating higher hepatic detoxification in respon
ders compared to both NR and R_BP, was the 
increased fecal excretion of the 6α-hydroxyl BAs 
glyco-hyocholic and glyco-hyodeoxycholic acids, 
which are CDCA and LCA products respectively, 
generated in the liver by 6α-hydroxylase (6α-H; 
CYP3A4; EC 1.14.14.57), a phase I detoxification 
cytochrome P450 enzyme.24

SCFAs are bacterial metabolites produced from 
dietary sources of indigestible fiber with important 
roles in inflammation and gut homeostasis.25 

A recent study found that total fecal SCFAs and 
acetate were higher in PBC patients with fibrosis 
with respect to patients without fibrosis,26 how
ever, to our knowledge there are no studies that 
have characterized SCFAs with respect to UDCA 

Figure 4. Correlations between bile acids and taxa. Pearson correlations between the identified significant taxa (ANCOMBC-adjusted 
abundances) and bile acids intensities in feces (right) and urine (left). P-values were adjusted using Benjamini-Hochberg, with a 10% 
false discovery rate threshold (Padj<0.1). Only significant correlations with an absolute coefficient value equal or bigger than 0.2 are 
shown. n = 380 (169 NR; 196 R; 15 R_BP). NR: non-responder; R: responder; R_BP: responder with bad prognosis.
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dynamic response. We did not find differences in 
fecal SCFAs across response groups, leading us to 
conclude that UDCA dynamic response is not 
associated with differences in fecal SCFA abun
dances and that their role, if any, might be second
ary to the one of the bile acid milieu and likely 
through indirect modulation of gut homeostasis 
and immune pathways.

The gut-liver-kidney axis has been less often 
addressed in PBC than the gut–liver connection. 
The kidney absorbs circulating BAs through the 

solute carrier family 10 member 2 (SLC10A2; for
merly ASBT) and exports them back to the systemic 
circulation to be re-assimilated by the liver.27 Under 
normal physiological conditions, BAs are found in 
low concentrations in urine, but cholestasis can 
result in a buildup of BAs in serum and urine as 
a compensatory mechanism to avoid their accumu
lation in the liver parenchyma.28 Supporting the 
evidence of a persistent higher systemic exposure 
of hydrophobic BAs, we found that non- 
responders had higher levels of G-BAs, G-CDCA 

Figure 5. Summary of changes occurring in different treatment responses. Dynamic responders (R) had higher fecal excretion of 
conjugated secondary and oxo-BAs and increased urine 12-dehydrocholic acid. R_BP had lower excretion of unconjugated secondary 
BAs. Dashed arrows indicate multi-step reactions. Blank cells in the summary table of proposed bacterial functional differences 
(bottom) indicate that our data do not provide enough evidence of whether these pathways are different across groups. 6α-H: 6-α 
hydroxylase (CYP3A4); bai: BA-induced operon enzymes for 7α-dehydroxylation; Bsh: bile salt hydrolase; CA: cholic acid; CDCA: 
chenodeoxycholic acid; DCA: deoxycholic acid; DHCA: dehydrocholic acid; DKCA: diketocholanic acid; F: feces; HSDH: hydroxysteroid 
dehydrogenase; LCA: lithocholic acid; NR: non-responder; R: responder; R_BP: responder with bad prognosis; T/G: taurine-/glycine- 
conjugated; U: urine; UDCA: ursodeoxycholic acid.
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and UDCA in urine compared to responders. 
However, we did not find any association between 
serum bile acids and UDCA response. This result is 
not surprising, as total serum bile acids have histori
cally been reported to remain similar after UDCA 
treatment – although an increase in UDCA percen
tage has been observed when comparing serum bile 
acid composition before and after treatment initia
tion, which could not be tested in our cohort due to 
its cross-sectional design -,29,30 and it is likely that 
changes in serum bile acids are only observed in 
those patients with a more advanced stage of liver 
disease.31,32 Interestingly, 12-dehydrocholic acid 
(12-DHCA) was the only bile acid specifically 
increased in the urine of responders, which could 
imply a higher rate of synthesis and systemic bioa
vailability in these patients. 12-DHCA is a secondary 
bile acid produced from cholic acid (CA) by the 
bacterial enzyme 12α-hydroxysteroid dehydrogen
ase (12α-HSDH; EC 1.1.1.176), which removes the 
hydrogen from the 12-OH group. The enzyme has 
been identified in Clostridium and Eggerthella 
species.33 In our cohort only 3 ASVs out of 9,865 
were assigned to the genus Eggerthella and 9 to 
Clostridium: of these, two Eggerthella ASVs were 
present in 30% of the samples and were not differ
ently prevalent nor abundant across response 
groups, and the rest were present in less than 10% 
of the samples and were not further analyzed, as 
there is no method to analyze such sparse features 
without introducing biases. It is possible that there 
exist other yet unidentified taxa able to produce 12- 
DHCA; in agreement with this hypothesis, we found 
a positive correlation between Eggerthella’s phylum 
Actinobacteriota/Actinomycetota, higher in R, and 
7,12-diketocholanic acid in feces, a 12-DHCA deri
vate upon which the 7α-OH has been oxidized by 
a bacterial 7α-HSDH (Figure 5). Another bacterial 
enzyme that could produce 12-DHCA is 12β-HSDH 
(EC 1.1.1.238), from 12-epicholic acid, but informa
tion on this gene in bioinformatic databases and 
research publications is also scarce. Further research 
is needed to ascertain whether 12-DHCA has an 
active role in the favorable response to UDCA or 
whether it can be used as an early biomarker of 
response. Given that modifications by HSDH 
increase BAs hydrophilicity,34 12-DHCA could 
have a choleretic effect. Studies supporting this 

conclusion have been carried out mainly in animals 
and using the fully oxidized 3,7,12-DHCA.35,36

Metataxonomic compositions between R and 
NR were surprisingly similar given the observed 
differences in BA profiles, so we postulate that the 
bacterial contribution to treatment dynamic 
response relies on the function and activity of the 
broad bacterial community rather than on few 
dominant organisms, and that integrative metage
nomics, metatranscriptomics, and/or metaproteo
mics might be needed to fully understand the 
observed changes in secondary bile acids. This 
was not the case for R_BP patients, which had 
reduced alpha diversity evenness compared to 
NR, and differently abundant taxa compared to 
matched NR and R. Given the significant associa
tions between taxa and bile acids (Figure 4), we 
suggest that when it comes to differing dynamic 
responses to UDCA, the identified taxonomic 
changes might be relevant for the impaired treat
ment response observed in some patients (Table 1). 
BMI is a risk factor for disease progression and is 
associated with changes in gut microbiome. While 
we did not find any differences in BMI across 
response groups after one year of treatment, and 
taxonomic changes were independent of BMI, 
future prospective studies should monitor whether 
any weight gain during treatment can increase the 
risk of impaired response. Despite the low numbers 
of patients in the R_BP group, there would be 
significant clinical benefit in accurately stratifying 
these patients early in their treatment journey and 
we advocate for longitudinal studies measuring 
microbial and metabolic features before and after 
intervention in bigger cohorts. Interestingly, we 
observed that baseline ALP concentrations in the 
R_BP group fell in the upper quartile of the corre
sponding NR and R distributions (Supplementary 
Figure S4). However, it is unclear whether this can 
be a robust stratification criterion for predicting an 
impaired UDCA dynamic response in the general 
population. Further studies enrolling higher num
bers of participants with clinical similarities to the 
R_BP group are required to ascertain this.

Bile acid sequestrants are usually prescribed to 
manage pruritus, a PBC complication.37 More 
patients in the R_BP group (19%) were prescribed 
bile acid sequestrants compared to NR (7%) and 
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R (3%). We found that sequestrants did not affect 
bacterial composition in our cohort, but they may 
affect fecal bile acids composition (Figure 1c). It is 
important to note that our findings are limited by 
the fact that only 22 out of 419 patients (5.3%) were 
co-treated with sequestrants, so further research is 
needed to confirm whether sequestrants are asso
ciated with a higher risk of partial or non-response 
to UDCA and elucidate their impact on bacterial 
and metabolic changes. To our knowledge, there is 
only one recent study on 33 UDCA-treated PBC 
patients with jaundice, which were given cholestyr
amine for a total of 16 weeks to assess its effects on 
bile acids and microbial composition.38 The study 
found that individuals with higher reduction in 
serum bilirubin at 16 weeks had increased fecal 
bile acids excretion, serum SCFAs and two 
Lachnospiraceae species (SCFAs producers), com
pared to baseline. However, it is unclear how these 
changes ultimately relate to UDCA dynamic or 
prognostic responses.

Our study has other limitations: our analysis 
only considered antibiotics taken within the last 3  
months prior to sample collection. While many 
studies show a recovery of microbial diversity one 
month after a course of antibiotics,39 there are 
considerable inter-individual differences and 
recent studies have shown long lasting or even 
potentially permanent changes.40 The degree of 
fibrosis is a contributing factor for PBC 
progression.41 While we did not find differences 
in fibrosis between NR and R patients (Fisher’s P =  
0.14), we could not assess this in R_BP, owing to 
the unavailability of transient elastography records 
in 19% of patients in that group. The bile acid 
method did not annotate sulfated bile acid species 
which are commonly found in feces, serum and 
urine;32 similar to the observed increase in 6α- 
hydroxylated BAs, it is possible that dynamic 
responders have higher excretion of sulfated-BAs 
as well, as they are both detoxifying hepatic mod
ifications. Recently, novel bile acid conjugations 
carried by gut microbes have been discovered,42 

so it will be important to investigate what role 
these species may have in PBC in future studies. 
We cannot discard the possibility that pre- 
treatment extant bacteria could influence UDCA 
response as we could not test this hypothesis with 
the cross-sectional design of our cohort. It would 

therefore be important for future studies to assess 
bacterial and BA differences at baseline in respon
ders compared to partial and non-responders. In 
this regard, two studies in smaller cohorts have 
analyzed bacterial changes before and after 
UDCA treatment. One study found a decrease in 
taurine-conjugated BAs post-treatment, which was 
inversely associated with Bilophila, consistent with 
this genus ability to metabolize taurine.43 However, 
conclusions of the study are limited by the lack of 
an explicit differential abundance analysis on the 
taxonomy data itself between pre- and post- 
treatment. The other study found Veillonella per
sistently increased in PARIS II prognostic non- 
responders.15 Although we did not find differences 
in Veillonella in dynamic non-responders, the 
Veillonellaceae family was lower in R than R_BP 
(Figure 3c), further supporting a role for 
Veillonellaceae family and its members in the out
come of UDCA dynamic and prognostic response.

Overall, our findings show a significant differ
ence in fecal and urine bile acid profiles in UDCA 
treatment dynamic responders, particularly sec
ondary and tertiary host-bacterial compounds. 
We identified urine 12-DHCA as a potential 
novel biomarker of favorable treatment response 
and showed that reduced alpha diversity evenness 
and gut bacterial composition are associated with 
an impaired treatment response. Our results also 
open the path to test new hypotheses on the 
mechanistic role of increased 12-DHCA in respon
ders and highlight the need for studies aimed at 
determining the effect of bile acid sequestrants in 
treatment response.

Patients and methods

Study cohort

The cohort (described in Carbone et al.16 con
sisted of 419 adults (≥18 y old) with PBC who 
had received UDCA for at least 12 months 
(Table 1). PBC diagnosis was determined by 
presence of at least two of the following criteria: 
a) serum anti-mitochondrial antibodies (AMA) 
at a titer≥1:40, b) persistently elevated serum 
alkaline phosphatase (ALP) prior to treatment 
with UDCA, c) liver histology consistent with 
PBC. Patients within the eligibility criteria (≥18  
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y old with diagnosed PBC and receiving UDCA 
treatment) were recruited across 20 National 
Health Service (NHS) hospitals in the UK. The 
study was conducted in accord with the guide
lines of the Declaration of Helsinki and the 
principles of good clinical practice, and was 
approved by the Oxford C research ethics com
mittee (REC reference: 07/H0606/96) and by the 
research and development department of each 
collaborating hospital. All participants provided 
written informed consent.

Response classification

To classify patients as UDCA responders, we 
initially applied the Barcelona criteria.7 The set 
of outliers in the responders’ group ALP distri
bution (Figure 1a) – viz., values outside the 
whiskers limits of the box-and-whiskers plot, 
equivalent to an ALP level beyond the distribu
tion’s 75th quantile plus 1.5 times its interquar
tile range (IQR)) – coincided with ALP levels 
higher than 1.67 times the upper limit of nor
mal (ULN), a threshold used by the Toronto 
criteria associated with bad prognosis.9 In addi
tion, we observed that these individuals had 
lower serum albumin and higher bilirubin than 
the other responders (Table 1). We therefore 
defined, for the purposes of the study, three 
response groups in the cohort: non-responders 
(NR), responders (R; ALP levels reduced >40% 
or below the ULN after at least 1 year of treat
ment) or responders with bad prognosis (R_BP; 
ALP levels reduced >40% after 1 year of treat
ment, but still higher than 1.67 × ULN). The 
ULN for ALP depends on the biochemical assay 
kit that was used in each hospital, therefore one 
of the 16 R_BP patients does not appear as an 
outlier in Figure 1a.

Sample collection and storage

Blood and urine samples were collected on-site 
during the clinical visit at the assigned collection 
centers (Newcastle, Leeds, Birmingham, 
Nottingham, Cambridge, Norwich, London: 
Imperial College Healthcare, Royal Free). All col
lection centers used the same materials and fol
lowed strictly the same standard operating 

procedures (SOPs) for sample collection, handling, 
storing, and shipping. Briefly, blood was left to clot 
for 1 hour at room temperature (RT) to obtain the 
serum and second urine void of the day was placed 
on ice. Samples were centrifuged (1,000 ×g; 10 min; 
4°C) and supernatant divided into aliquots. Stool 
samples were collected by the patient with 
a FecesCatcher® 48 hours prior to the appointment, 
transferred into sterile tubes and frozen at −20°C in 
a domestic freezer. Patients brought the frozen 
fecal sample in a provided cooler bag with 
a U-Tek® pack the day of the visit. All samples 
were stored at −80°C until further processing.

Ultra-high-performance liquid 
chromatography-mass spectrometry bile acid 
profiling

Sample preparation
Fecal extracts. Fecal samples were freeze-dried 
upon arrival at the Imperial College metabolomics 
facility. 100 mg were extracted using bead-beating 
with 1 mL of solvent (2:1:1, H2O:IPA:ACN) or 500  
µL, if <50 mg were obtained, and the extracts were 
split for the subsequent metabolomic assays. 80 µL 
of fecal extract were transferred to a well in a 96- 
well plate and 20 µL used to generate the quality 
control (QC) samples.
Serum and urine. Serum and urine samples were 
thawed and centrifuged (16,000 ×g; 20 min; 4°C). 
50 µL of serum were mixed with 150 µL of cold 
methanol, followed by incubation at −20°C for 24  
hours and 75 µL of urine were diluted with an equal 
volume of IPA:ACN (1:1). Tubes were vortexed and 
centrifuged (16,000 ×g; 10 min; 4°C), 100 µL of super
natant were transferred to wells in a 96-well plate and 
10 µL used to produce the pooled QC sample.
Quality control samples. QC samples were prepared 
by pooling equal volumes of each study sample into 
a single tube and divided into aliquots. QC samples 
were placed at the beginning and end of the run and 
interspersed evenly with the randomized study sam
ples. In addition, they were spiked with mixtures of 
56 BA standards (Steraloids, Newport, RI) to deter
mine their chromatographic retention times.

Data acquisition and processing
Ultra-High-Performance Liquid Chromatography 
coupled with Mass Spectrometry (UHPLC-MS) 
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was performed using the method described in 
Sarafian et al.,44 with an Acquity UPLC column 
coupled to a Xevo G2 Q-ToF mass spectrometer 
(Waters Ltd, Elstree, UK) equipped with an elec
trospray ionization source operating in negative 
ion mode. Waters Ltd raw files were converted to 
.mzML format with the msConvert tool from 
ProteoWizard software.45 BAs were annotated 
using the retention time of the spiked standards 
as reference and peaks area integrated using 
peakPantheR R-package.46 Features below the 
limit of detection (LOD) in more than 90% of QC 
samples were discarded. To adjust for signal inten
sity decay along the run, each feature was divided 
by a smoothed curve fitted on the QC’s total ion 
intensity, generated with the loess function from 
the stats R-package (package specification will be 
omitted for functions within stats beyond this 
point). Normalized features with a coefficient of 
variation greater than 30% in QC samples or 
below LOD in more than 20% of study samples 
were discarded. For fecal samples, relative intensi
ties were further normalized by mg of fecal material 
used. All features were log-transformed and miss
ing values imputed using impute.QRILC from the 
imputeLCMD R-package. For statistical analyses, 
features were also mean-centered.

Proton nuclear magnetic resonance spectroscopy

Relative intensities of fecal SCFAs and urine creati
nine were obtained using untargeted Proton Nuclear 
Magnetic Resonance Spectroscopy (1H-NMR). 
Briefly, 100 µL of fecal extract (80 µL when extracted 
with 500 µL of solvent) were lyophilized and the 
residue resuspended in 600 µL of LC-MS-grade H2 
O. 540 µL of the fecal supernatant or thawed urine 
samples were mixed with 60 µL of NMR buffer pre
pared with D2O (1.5 M NaH2PO4, 5.8 mM 
3-(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium 
salt (TSP; SIGMA, UK), 2 mM NaN3, pH 7.4), cen
trifuged (12,000 ×g; 4°C; 5 min), and placed in a 5  
mm SampleJet NMR tube (Bruker, Germany) for 
1H-NMR spectroscopic analysis. QC samples were 
prepared by pooling equal amounts of every study 
sample into a single tube and dividing it into 600 µL 
aliquots in separate tubes. QC samples were ana
lyzed simultaneously with the randomized study 
samples and evenly spread across the run. 

1H-NMR experiments were carried out using 
a Bruker Avance spectrometer (Bruker, Germany) 
operating at 600 MHz as described previously.47 

Spectra were acquired through a standard 1-dimen
sional pulse sequence using the first increment of the 
Nuclear Overhauser Effect (NOE) pulse sequence to 
achieve water suppression, and 2D J-resolved (JRES) 
spectra for aiding metabolite identification. Spectra 
were imported into MATLAB using in-house 
scripts. Redundant spectral regions (water peak 
and flanking empty peak areas) were removed and 
data normalized by probabilistic quotient normal
ization (PQN).48 Features were annotated using sta
tistical total correlation spectroscopy (STOCSY)49 

and 1H-NMR spectra and peak databases. Area 
under the curve (AUC) of a representative peak 
was calculated for each annotated feature and used 
for statistical analysis.

16S rRNA gene sequencing

DNA was extracted from 250 mg of fecal samples 
using PowerLyzer PowerSoil DNA Isolation Kit 
(Mo Bio, Carlsbad, CA, USA) following manufac
turer’s instructions, with the addition of a bead- 
beating step for 3 min at speed 8 in a Bullet 
Blender Storm (Chembio Ltd, St Albans, UK). 
DNA was stored at − 80°C. Sample libraries 
amplifying the V1–V2 region of the 16S rRNA 
gene were prepared following Illumina’s 16S 
Metagenomic Sequencing Library Preparation 
Protocol and as described previously.50 

Sequencing was performed in two batches on an 
Illumina MiSeq platform using the MiSeq 
Reagent Kit v3 (Illumina Inc, San Diego, USA) 
and paired-end 300-bp chemistry. Data were 
demultiplexed, barcodes removed and FASTQ 
files generated using Illumina software BCL 
Convert. Amplicon sequence variants (ASVs) 
were generated using DADA2 R-package;51 for 
each batch, primer sequences and 3’-end nucleo
tides were trimmed using the filterAndTrim func
tion with maxEE= Inf, to avoid introducing bias 
during the quality filtering step.52 ASVs from 
each batch were then merged and chimeras 
removed. Taxonomy was assigned with the 
IdTaxa function from DECIPHER R-package,53 

and using the Genome Taxonomy Database 
release 95 (GTDB_r95) as a training set, provided 
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in the package website (http://www2.decipher. 
codes/Downloads.html). Presence of contaminant 
sequences was assessed with isContaminant from 
decontam R-package.54 Twelve contaminant 
sequences were detected and removed, two of 
them commonly found in DNA reagent kits 
(Rhodococcus spp and Herbaspirillum spp). To 
build a phylogenetic tree, sequences were aligned 
using Clustal Omega algorithm with the msa 
R-package and a maximum parsimony tree was 
built with the function pratchet, from the phan
gorn R-package using default parameters. Faith’s 
phylogenetic diversity (PD) was calculated using 
picante R-package. For statistical analyses, except 
for α-diversity calculations, features with a zero 
count in more than 90% of samples were dis
carded, left-censored zero values were imputed 
with cmultRepl from zCompositions R-package,55 

using a geometric Bayesian multiplicative (GBM) 
replacement method,56 and data were centered- 
log-ratio (clr)-transformed.

Statistical methods

Principal Component Analysis (PCA) was per
formed with the opls function from the ropls 
R-package.57 When measured ASV counts are 
clr-transformed, PCA can be used to inspect 
beta-diversity.58 Permutational Multivariate 
Analysis of Variance (PERMANOVA) was used 
to quantify the variance explained by each factor 
in Figure 1c. Euclidean distance matrices were 
built for each normalized omics dataset with the 
function dist and used as input in the adonis2 
function of the vegan R-package. Variance cor
responds to the total variance explainable by 
that variable, as it was calculated independently 
of other variables (that is, the factor was the 
only predictor in the model). For missing 
records in categorical variables (N = 12 (2.9%) 
antibiotics; N = 11 (2.6%) APAP; N = 8 (1.9%) 
smoking), we imputed the most common cate
gory. Given the collinearity between weight and 
BMI (Spearman P = 0.9), missing BMI records 
(N = 10 (2.4%)) were predicted by linear regres
sion with weight and sex as explanatory vari
ables using lm. When weight was also missing 
(N = 3 (0.7%)), sex-specific BMI median values 
were imputed.

Bacterial differential abundance (DA) signifi
cance testing was performed with ANCOMBC 20 

using the following per-feature model:
feature ~ response + sex + age + BMI + antibio

tics + PPI + smoking + hospital
where response had three categories: non- 

responders (NR; reference group), R and R_BP 
(see response classification). Antibiotics and PPI 
were binary variables indicating whether patients 
took antibiotics within the last 3 months or proton 
pump inhibitors (PPI) regularly. Smoking history 
had three categories: “never,” “former,” and “cur
rent.” Hospital acronym, with 20 categories, was 
included as a proxy of geographical area to account 
for the different location of the recruited partici
pants. Continuous variables (age and BMI) were 
mean-centered and univariance-scaled. ANCOM 
first estimates features with structural zero values 
across experimental groups,59 which are consid
ered statistically significant. Features not found to 
be consistently absent in one of the experimental 
groups were tested for abundance difference across 
groups. However, we estimated that in our dataset, 
at least 50 samples per group are needed to detect 
structural zeros with an acceptable false-positive 
rate (see Supplementary Notes), and therefore the 
function parameter struc_zero was set to FALSE. 
P-values were adjusted (Padj) using the Holm 
method and null hypothesis was rejected if 
Padj<0.1.

For metabolomics data, the same model was 
fitted with lmer (lme4 R-package60, with hospital 
as a random intercept instead of fixed effect, and 
response significance assessed with a likelihood 
ratio test (anova R function) versus a null model 
with the same co-variates, but without the response 
variable. P-values were adjusted with p.adjust using 
the Benjamini-Hochberg method and Padj<0.1 con
sidered significant. Adjusted P-values are denoted 
as “Padj” throughout the text regardless of method 
used.

To generate the R_BP-matched subset, 
a Euclidean distance matrix was first created 
using sex, age, BMI, sequestrants, smoking, 
PPI, antibiotics and hospital as variables. 
Categories were first converted into integers 
and all variables were mean-centered and uni
variance-scaled. For each R_BP sample, a NR 
and R sample with the minimum distance 
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value was selected. Non-imputed BMI was used 
for matching, and sample size across groups was 
not artificially balanced by iteratively removing 
each match from the selection population. This 
generated 12 matched R and 15 matched NR 
samples (Supplementary Table S8). The R_BP- 
matched metataxonomic dataset was analyzed 
with ANCOMBC as previously described, how
ever due to the reduced sample numbers only 
age and BMI were added as covariates in the 
model.

Correlations between omics were performed 
with corr.test from the psych R-package and the 
heatmap was plotted using corrplot R-package. In 
addition, tidyverse 61 and ggpubr R-packages were 
used to generate the figures.
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6α-H 6-α hydroxylase (CYP3A4)
ACN acetonitrile
ALP alkaline phosphatase
AMA anti-mitochondrial antibodies
APAP acetaminophen (paracetamol)
ASV amplicon sequence variant
AUC area under the curve
BA bile acid
bai bile acid inducible operon
BMI body mass index
Bsh bile salt hydrolase
CA cholic acid
CDCA chenodeoxycholic acid
CI confidence interval
DA differential abundance
DCA deoxycholic acid
DHCA dehydrocholic acid
DKCA diketocholanic acid
EC enzyme commission
F feces
G-BA glycine-conjugated bile acid
GBM Geometric Bayesian Multiplicative
HSDH hydroxysteroid dehydrogenase
IPA isopropanol
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IQR interquartile range
LCA lithocholic acid
LOD limit of detection
MS mass spectrometry
NMR nuclear magnetic resonance
NR non-responder
Padj adjusted P-value
PBC primary biliary cholangitis
PCA principal component analysis
PPI proton pump inhibitor
PQN probabilistic quotient normalisation
PSC primary sclerosing cholangitis
QC quality control
R responder
R_BP responder with bad prognosis
RT room temperature
SCFA short-chain fatty acid
STOCSY statistical total correlation spectroscopy
U urine
ULN upper limit of normal
UHPLC ultra-high-performance liquid chromatography
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