514 research outputs found

    An Expansion Term In Hamilton's Equations

    Get PDF
    For any given spacetime the choice of time coordinate is undetermined. A particular choice is the absolute time associated with a preferred vector field. Using the absolute time Hamilton's equations are (δHc)/(δq)=π˙+Θπ,- (\delta H_{c})/(\delta q)=\dot{\pi}+\Theta\pi, + (\delta H_{c})/(\delta \pi)=\dot{q},where, where \Theta = V^{a}_{.;a}istheexpansionofthevectorfield.Thusthereisahithertounnoticedtermintheexpansionofthepreferredvectorfield.Hamiltonsequationscanbeusedtodescribefluidmotion.Inthiscasetheabsolutetimeisthetimeassociatedwiththefluidscomovingvector.Asmeasuredbythisabsolutetimetheexpansiontermispresent.Similarlyincosmology,eachobserverhasacomovingvectorandHamiltonsequationsagainhaveanexpansionterm.ItisnecessarytoincludetheexpansiontermtoquantizesystemssuchastheabovebythecanonicalmethodofreplacingDiracbracketsbycommutators.Hamiltonsequationsinthisformdonothaveacorrespondingsympleticform.Replacingtheexpansionbyaparticlenumber is the expansion of the vector field. Thus there is a hitherto unnoticed term in the expansion of the preferred vector field. Hamilton's equations can be used to describe fluid motion. In this case the absolute time is the time associated with the fluid's co-moving vector. As measured by this absolute time the expansion term is present. Similarly in cosmology, each observer has a co-moving vector and Hamilton's equations again have an expansion term. It is necessary to include the expansion term to quantize systems such as the above by the canonical method of replacing Dirac brackets by commutators. Hamilton's equations in this form do not have a corresponding sympletic form. Replacing the expansion by a particle number N\equiv exp(-\int\Theta d \ta)andintroducingtheparticlenumbersconjugatemomentum and introducing the particle numbers conjugate momentum \pi^{N}thestandardsympleticformcanberecoveredwithtwoextrafieldsNand the standard sympletic form can be recovered with two extra fields N and \pi^N$. Briefly the possibility of a non-standard sympletic form and the further possibility of there being a non-zero Finsler curvature corresponding to this are looked at.Comment: 10 page

    Converting Classical Theories to Quantum Theories by Solutions of the Hamilton-Jacobi Equation

    Full text link
    By employing special solutions of the Hamilton-Jacobi equation and tools from lattice theories, we suggest an approach to convert classical theories to quantum theories for mechanics and field theories. Some nontrivial results are obtained for a gauge field and a fermion field. For a topologically massive gauge theory, we can obtain a first order Lagrangian with mass term. For the fermion field, in order to make our approach feasible, we supplement the conventional Lagrangian with a surface term. This surface term can also produce the massive term for the fermion.Comment: 30 pages, no figures, v2: discussions and references added, published version matche

    Homogeneous variational problems: a minicourse

    Get PDF
    A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension mm. In this minicourse we discuss these problems from a geometric point of view.Comment: This paper is a written-up version of the major part of a minicourse given at the sixth Bilateral Workshop on Differential Geometry and its Applications, held in Ostrava in May 201

    The causal structure of spacetime is a parameterized Randers geometry

    Full text link
    There is a by now well-established isomorphism between stationary 4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries - these Randers geometries being a particular case of the more general class of 3-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes - the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (time-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page

    Involution and Constrained Dynamics I: The Dirac Approach

    Full text link
    We study the theory of systems with constraints from the point of view of the formal theory of partial differential equations. For finite-dimensional systems we show that the Dirac algorithm completes the equations of motion to an involutive system. We discuss the implications of this identification for field theories and argue that the involution analysis is more general and flexible than the Dirac approach. We also derive intrinsic expressions for the number of degrees of freedom.Comment: 28 pages, latex, no figure

    Multi-transmission-line-beam interactive system

    Full text link
    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes

    Understanding quantization: a hidden variable model

    Full text link
    We argue that to solve the foundational problems of quantum theory one has to first understand what it means to quantize a classical system. We then propose a quantization method based on replacement of deterministic c-numbers by stochastically-parameterized c-numbers. Unlike canonical quantization, the method is free from operator ordering ambiguity and the resulting quantum system has a straightforward interpretation as statistical modification of ensemble of classical trajectories. We then develop measurement without wave function collapse \`a la pilot-wave theory and point out new testable predictions.Comment: 16 pages, based on a talk given at "Emergent Quantum Mechanics (Heinz von Foerster Conference 2011)", see http://iopscience.iop.org/1742-6596/361/

    Know Your Fertilizer Materials

    Get PDF

    Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    Get PDF
    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.Comment: 37 page

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems
    corecore