2,045 research outputs found
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci
The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics
Drive theory and heredity in Amy Allen's Critique on the Couch
Amy Allen’s Critique on the Couch is a seminal contribution to the study of the relationship between psychoanalysis and critical theory. At a time when most authors prefer to ignore the difficulties raised by the pessimistic anthropology of psychoanalysis rather than turning those difficulties into the object of their reflexion, Allen’s approach does justice to the inspiration of the founders of the Frankfurt School, who made psychoanalysis one of the pillars of their critical theory of society.info:eu-repo/semantics/publishedVersio
Drive theory and heredity in Amy Allen's Critique on the Couch
Amy Allen’s Critique on the Couch is a seminal contribution to the study of the relationship between psychoanalysis and critical theory. At a time when most authors prefer to ignore the difficulties raised by the pessimistic anthropology of psychoanalysis rather than turning those difficulties into the object of their reflexion, Allen’s approach does justice to the inspiration of the founders of the Frankfurt School, who made psychoanalysis one of the pillars of their critical theory of society.info:eu-repo/semantics/publishedVersio
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP
The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector
that collects data provided by the collision in the Beijing Electron Positron
Collider II (BEPCII), hosted at the Institute of High Energy Physics of
Beijing. Since the beginning of its operation, BESIII has collected the world
largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the
luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC
decreases its efficiency in the first layers up to 35% with respect to the
value in 2014. Since BESIII has to take data up to 2022 with the chance to
continue up to 2027, the Italian collaboration proposed to replace the inner
part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM).
The CGEM-IT project will deploy several new features and innovation with
respect the other current GEM based detector: the {\mu}TPC and analog readout,
with time and charge measurements will allow to reach the 130 {\mu}m spatial
resolution in 1 T magnetic field requested by the BESIII collaboration. In this
proceeding, an update of the status of the project will be presented, with a
particular focus on the results with planar and cylindrical prototypes with
test beams data. These results are beyond the state of the art for GEM
technology in magnetic field
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
Ordered La0.7Sr0.3MnO3 nanohole arrays fabricated on a nanoporous alumina template by pulsed laser ablation
Highly ordered nanohole arrays of [Formula: see text] manganite have been synthesized using pulsed laser deposition on nanoporous alumina template. Their structure and phase formation were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). The magnetic measurements were performed with respect to temperature and field and exhibit a ferromagnetic to paramagnetic transition at 284 K. In addition, the temperature dependence of electrical resistance was measured at different magnetic fields and an insulating phase throughout all the temperatures was observed. The low temperature ferromagnetic insulating state is discussed by the presence of a canted ferromagnetic state induced by the nanoholes. The present work shows the feasibility of combining both the nanoporous alumina template and pulsed laser ablation for the fabrication of perovskite manganite nanohole arrays which can also be extended to fabricate other multicomponent oxide nanohole materials.M K is thankful to FCT, Portugal for the Grant No. SFRH/ BPD/75110/2010. The authors acknowledged the financial supports from the projects NORTE-07–0124-FEDER000070, CERN/FIS-NUC/0004/2015 and IF/00686/2014
- …
