175 research outputs found
Accurate Sampling with Noisy Forces from Approximate Computing
In scientific computing, the acceleration of atomistic computer simulations
by means of custom hardware is finding ever growing application. A major
limitation, however, is that the high efficiency in terms of performance and
low power consumption entails the massive usage of low-precision computing
units. Here, based on the approximate computing paradigm, we present an
algorithmic method to rigorously compensate for numerical inaccuracies due to
low-accuracy arithmetic operations, yet still obtaining exact expectation
values using a properly modified Langevin-type equation
E-Hr System A New Paradigm - An Conceptual Study
Worldwide mission is asking for the organization to utilize creative plans to stay targeted. Each company assumes an indispensable process for progress, but it's far normal that there is one outstanding noteworthy department - Human Resources Management. In the prevailing international structures management, facts innovation is fully integrated into the HRM layout, replacing human belongings utilized by directors with digital human assets, E- HRM. It's far generally an a development that helps facts pushed (IT) digital HR the board, especially by way of improving web advancement. It is a framework for placing, deploying and using information for system control, and helps two of the maximum not unusual capabilities of HR education. The E-HRM Framework strengthens the HR capability of the Association via the Internet Innovation (Ruel et al., 2004). It gives regulatory guide to personnel running in institutions by means of exploiting the development of facts and creating concessions in and around representatives and on-board attention organizations. Nowadays, the hierarchical length of the E-HRM association is decided until the kid makes a decision whether an affiliation uses E-HRM
Multifunctional Properties of Chicken Embryonic Prenatal Mesenchymal Stem Cells- Pluripotency, Plasticity, and Tumor Suppression
The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis, and loss/gain of function experiments. In the present study, we assessed and characterized bone marrow derived mesenchymal stem cells from prenatal day 13 chicken embryos (chBMMSCs) and determined some novel properties. After assessing the mesenchymal stem cell (MSC) properties of these cells by the presence of their signature markers (CD 44, CD 73, CD 90, CD 105, and vimentin), we ascertained a very broad spectrum of multipotentiality as these MSCs not only differentiated into the classic tri-lineages of MSCs but also into ectodermal, endodermal, and mesodermal lineages such as neuron, hepatocyte, islet cell, and cardiac. In addition to wide plasticity, we detected the presence of several pluripotent markers such as Oct4, Sox2, and Nanog. This is the first study characterizing prenatal chBMMSCs and their ability to not only differentiate into mesenchymal lineages but also into all the germ cell layer lineages. Furthermore, our studies indicate that prenatal chBMMSCs derived from the chick provide an excellent model for multi-lineage development studies because of their broad plasticity and faithful reproduction of MSC traits as seen in the human. Here, we also present evidence for the first time that media derived from prenatal chBMMSC cultures have an anti-tumorigenic, anti-migratory, and pro-apoptotic effect on human tumors cells acting through the Wnt-ß-catenin pathway. These data confirm that chBMMSCs are enriched with factors in their secretome that are able to destroy tumor cells. This suggests a commonality of properties of MSCs across species between human and chicken
Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation
High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken
Regulatory elements and transcriptional control of chicken vasa homologue (CVH) promoter in chicken primordial germ cells
BACKGROUND: Primordial germ cells (PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cell-specific RNA binding proteins (RBPs) by modulating tissue-specific cis- and trans-regulatory elements. Studies on gene structures of chicken vasa homologue (CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cell fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cell-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH. RESULTS: We constructed green fluorescence protein (GFP) or luciferase reporter vectors containing the various 5′ flanking regions of CVH gene. From the 5′ deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at −316 to +275 base pair fragment with the highest luciferase activity. Additionally, we confirmed for the first time that the 5′ untranslated region (UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siRNA-mediated knockdown, we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression. CONCLUSIONS: These results demonstrate that cis-elements and transcription factors localizing in the 5′ flanking region including the 5′ UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Finally, this information will contribute to research studies in areas of reproductive biology, constructing of germ cell-specific synthetic promoter for tracing primordial germ cells as well as understanding the transcriptional regulation for maintaining germness in PGCs
The Testicular and Epididymal Expression Profile of PLCζ in Mouse and Human Does Not Support Its Role as a Sperm-Borne Oocyte Activating Factor
Phospholipase C zeta (PLCζ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCζ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCζ by immunoblotting. In both human and mouse, the active isoform of PLCζ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCζ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCζ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCζ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCζ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCζ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCζ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides
Safety and Efficacy of Using Off-label Bevacizumab Versus Mitomycin C to Prevent Bleb Failure in a Single-site Phacotrabeculectomy by a Randomized Controlled Clinical Trial
Capsulotomy and hydroprocedures for nucleus prolapse in manual small incision cataract surgery
Manual small incision cataract surgery (MSICS) involves the manual removal of nucleus through a scleral tunnel. To achieve 100% success every time, one has to do a good capsulotomy and should master the technique to prolapse the nucleus into anterior chamber. During conversion from extracapsular cataract surgery to MSICS, one can perform a can-opener capsulotomy and prolapse the nucleus. However, it is safer and better to perform a capsulorrhexis and hydroprolapse the nucleus, as it makes the rest of the steps of MSICS comfortable. Use of trypan blue in white and brown cataracts makes the capsulorrhexis and prolapse simple and safe. Extra caution should be taken in cases with hypermature cataracts with weak zonules and subluxated cataracts
Study on the efficiency of continuous flow-based constructed wetland system for grey water treatment
Water is inevitable for our life. Due to the population growth, there is a tremendous pressure on the existing fresh water resources such as surface water and ground water. Increasing water demand and improper usage of potable water lead to scarcity of fresh water resources. Globally, treating grey water is a real constraint to minimize the problem of water scarcity. The continuous flow-based constructed wetland system for grey water treatment is a technique for reusing the domestic grey water and it is a low-cost method. The current study was aimed to evolve a suitable user-friendly treatment system for handling the household grey water. In the present study, grey water has been collected from the Bharathidasan University and it has been treated with biofiltration and rhizhodegradation techniques using continuous flow-based constructed wetland system. The system has been found as more effective for treating the Physico-chemical parameters such as suspended solids, pH, electrical conductivity, TS, TDS, DO, BOD, COD, TOC, CO3, HCO3, SO4, NO3, PO4, Ca, Mg, Na, K, total hardness, calcium hardness, chloride, and total alkalinity. The results reported the reduction in the biological oxygen demand (89%), chemical oxygen demand (81%), DO (95%), carbonate (100%), sodium (65%), and potassium (85%).It also examined the benefits and risks associated with the results in the reuse of domestic grey water for the purpose of vegetable gardening, irrigation, and toilet flushing. Consequently, this biofiltration method is natural, simple, and low cost-effective treatment in a holistic manner.</jats:p
- …
