132 research outputs found

    The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites

    Full text link
    Among the effects predicted by the General Theory of Relativity for the orbital motion of a test particle, the post-Newtonian gravitomagnetic Lense-Thirring effect is very interesting and, up to now, there is not yet an undisputable experimental direct test of it. To date, the data analysis of the orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a test of the Lense-Thirring effect with a claimed accuracy of 20%-30%. According to some scientists such estimates could be optimistic. Here we wish to discuss the improvements obtainable in this measurement, in terms of reliability of the evaluation of the systematic error and reduction of its magnitude, due to the new CHAMP and GRACE Earth gravity models.Comment: LaTex2e, 6 pages, no figures, no tables. Paper presented at 2nd CHAMP science meeting, Potsdam, 1-4 September 200

    Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test

    Full text link
    We deal with the test of the general relativistic gravitomagnetic Lense-Thirring effect currently ongoing in the Earth's gravitational field with the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and LAGEOS II. One of the most important source of systematic uncertainty on the orbits of the LAGEOS satellites, with respect to the Lense-Thirring signature, is the bias due to the even zonal harmonic coefficients J_L of the multipolar expansion of the Earth's geopotential which account for the departures from sphericity of the terrestrial gravitational potential induced by the centrifugal effects of its diurnal rotation. The issue addressed here is: are the so far published evaluations of such a systematic error reliable and realistic? The answer is negative. Indeed, if the difference \Delta J_L among the even zonals estimated in different global solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008, AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to 4 times larger than in the evaluations so far published based on the use of the sigmas of one model at a time separately, amounting up to 37% for the pair EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based models yields bias as large as about 25-30%. The major discrepancies still occur for J_4, J_6 and J_8, which are just the zonals the combined LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in Central European Journal of Physics (CEJP

    How to reach a few percent level in determining the Lense-Thirring effect?

    Full text link
    In this paper we discuss and compare a node-only LAGEOS-LAGEOS II combination and a node-only LAGEOS-LAGEOS II-Ajisai-Jason1 combination for the determination of the Lense-Thirring effect. The new combined EIGEN-CG01C Earth gravity model has been adopted. The second combination cancels the first three even zonal harmonics along with their secular variations but introduces the non-gravitational perturbations of Jason1. The first combination is less sensitive to the non-conservative forces but is sensitive to the secular variations of the uncancelled even zonal harmonics of low degree J4 and J6 whose impact grows linearly in time.Comment: Latex2e, 22 pag. 1 table, 2 figures, 45 references. Changes in the Abstract, Introduction and Conclusions. Discussion on the non-gravitational perturbations on Ajisai and on the impact of the secular rates of the even zonal harmonics added. EIGEN-CG01C CHAMP+GRACE+terrestrial gravimetry/altimetry Earth gravity model used. Reference adde

    Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology

    Full text link
    It has been recently suggested by Dvali and Vikman that the superluminal neutrino phenomenology of the OPERA experiment may be due to an environmental feature of the Earth, naturally yielding a long-range fifth force of gravitational origin whose coupling with the neutrino is set by the scale M_*, in units of reduced Planck mass. Its characteristic length lambda should not be smaller than one Earth's radius R_e, while its upper bound is expected to be slightly smaller than the Earth-Moon distance (60 R_e). We analytically work out some orbital effects of a Yukawa-type fifth force for a test particle moving in the modified field of a central body. Our results are quite general since they are not restricted to any particular size of lambda; moreover, they are valid for an arbitrary orbital configuration of the particle, i.e. for any value of its eccentricity ee. We find that the dimensionless strength coupling parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <= lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <= lambda = 3 10^10 - 4.5 10^10. Our results are neither necessarily limited to the superluminal OPERA scenario nor to the Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast with our bounds: they generally extend to any theoretical scenario implying a fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Constraining the electric charges of some astronomical bodies in Reissner-Nordstrom spacetimes and generic r^-2-type power-law potentials from orbital motions

    Full text link
    We put model-independent, dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordstroem metric, which induces an additional potential U_RN \propto Q^2 r^-2. Our results extend to other hypothetical power-law interactions inducing extra-potentials U_pert = r^-2 as well (abridged).Comment: LaTex2e, 16 pages, 3 figures, no tables, 128 references. Version matching the one at press in General Relativity and Gravitation (GRG). arXiv admin note: substantial text overlap with arXiv:1112.351
    corecore