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S U M M A R Y
Global magnetic field models are typically expressed as spherical-harmonic expansion coef-
ficients. Slepian functions are linear combinations of spherical harmonics that produce new
basis functions, which vanish approximately outside chosen geographical boundaries but also
remain orthogonal within the spatial region of interest. Hence, they are suitable for decompos-
ing spherical-harmonic models into portions that have significant magnetic field strength only
in selected areas. Slepian functions are spatio-spectrally concentrated, balancing spatial bias
and spectral leakage. Here, we employ them as a basis to decompose the global lithospheric
magnetic field model MF7 up to degree and order 72, into two distinct regions. One of the
resultant fields is concentrated within the ensemble of continental domains, and the other is
localized over its complement, the oceans. Our procedure neatly divides the spectral power
at each harmonic degree into two parts. The field over the continents dominates the overall
crustal magnetic field, and each region has a distinct power-spectral signature. The oceanic
power spectrum is approximately flat, while that of the continental region shows increasing
power as the spherical-harmonic degree increases. We provide a further breakdown of the field
into smaller, non-overlapping continental and oceanic regions, and speculate on the source of
the variability in their spectral signatures.

Key words: Magnetic anomalies: modelling and interpretation; Satellite magnetics.

1 I N T RO D U C T I O N

The magnetic field of the Earth is one of the few measurable quan-
tities that provide remote access to the internal dynamics of our
planet (see, e.g. Thébault et al. 2010). For instance, past movements
of tectonic plates may be inferred from the orientation of magnetic
minerals in the crust, while the secular variation of the field at the
surface gives insight into the properties of the outer core (Hulot
et al. 2010).

This paper studies the global lithospheric magnetic field at the
Earth’s surface, focusing on the different signatures of the field
over continents and oceans. On short timescales, the crustal field
can be regarded as effectively constant in time, though its induced
part does vary slightly (Thébault et al. 2009, 2010). The magnitude
of the crustal field can vary from a fraction of a nanoTesla (nT) to
thousands of nT at the Earth’s surface. The continents comprise a
number of ancient blocks with varying magnetic properties, while
the oceanic crust is relatively young, thinner and appears much
more homogeneous (Arkani-Hamed & Dyment 1996). It is gener-
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ally assumed that at a global scale the continental regions mainly
exhibit induced magnetization while the oceanic regions can con-
tain both remanent and induced magnetization (Cohen & Achache,
1994; Dyment & Arkani-Hamed 1998). One manifestation of the
remanent magnetization of the ocean floor is the ‘striping’ parallel
to mid-ocean ridges, which is due to past reversals of the magnetic
poles. The width of the stripes, from a few kilometres to tens of kilo-
metres, reflects the combination of plate spreading rate and reversal
frequency (Kono 2007).

Since the times of Gauss, planetary magnetic fields have been
represented by the expansion of the potential in the basis of spher-
ical harmonics (e.g. Backus et al. 1996; Langel & Hinze, 1998).
From the ‘spectral’ representation in terms of spherical-harmonic
‘Gauss’ coefficients at individual degrees and orders, regional ‘spa-
tial’ properties are difficult to deduce. The spherical harmonics are
perfectly localized spectrally (Freeden & Michel 1999) but their
spatial energy is geographically distributed over the entire globe.
Information about the field contained in a single spherical-harmonic
coefficient thus ultimately derives from a signal that may originate
anywhere on the surface of the planet. Only by expanding the en-
tire set of spherical harmonics back into the space domain do we
regain a sense of the geographic distribution of the field—at the
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expense of confounding its spectral properties. The situation is even
worse when the spherical-harmonic coefficients are squared (which
removes phase information) and summed over all orders, to report
a (by this construction necessarily) isotropic ‘power spectrum’ or
‘degree variance’, at each individual degree. Here too, while we get
an idea of the mean-squared value of the field at a certain spherical-
harmonic degree, we remain ignorant of the distribution of precisely
where, geographically, the field is prominently contributing to the
power at that degree. In other words, spherical harmonics form
a well-understood and convenient apparatus for the representation
and analysis of magnetic fields globally, but they lack the flexibility
to identify the spatial and spectral structure of such fields from a
‘spatio-spectrally’ mixed vantage point.

One of the early attempts at bringing spatial selectivity to
spherical-harmonic-based representations involved an approach
reminiscent of ‘wavelet’ analysis (Simons et al. 1997). Spatially
selective windows targeting a particular spectral degree range were
designed, and a space-spectral analysis conducted via a convolu-
tional approach. The drawback of wavelets and their relatives is that
the area of the spatial region over which information is being ex-
tracted scales inversely with the spherical-harmonic degree range of
interest. Large-degree (high spatial frequency) information derives
from small areas, small-degree (low spatial frequency) structure is
obtained from larger regions.

To study the spectral behaviour of a geophysical signal confined
to a particular geographic region of interest, a different solution
must be sought. Suppose we were to window the data over a spatial
region of interest using a simple multiplicative binary mask (e.g.
Peebles 1973; Wandelt et al. 2001; Dahlen & Simons, 2008). In the
spectral domain, this operation would essentially correspond to a
convolution of the spherical-harmonic expansion coefficients of the
data with those of the mask itself. A binary mask, while perfectly
localized in the space domain, has an infinite dimensional ringing
behaviour in the spectral domain. The analysis operation would thus
lead to results displaying undesirable spectral-domain artefacts. Ev-
idently some way of ‘tapering’ the ‘boxcar’ must be found, by which
some spatial selectivity is sacrificed in return for spectral windows
that have better sidelobe behaviour (Tegmark 1996, 1997). Such
procedures, known as ‘apodization’, were first cast as an optimiza-
tion problem for application to time-series analysis in the 1960s
(see, e.g. Slepian 1983).

With spherical Slepian functions (Wieczorek & Simons 2005;
Simons et al. 2006) the trade-off between spectral and spatial con-
centration on the surface of the unit sphere is optimized, by con-
structing a particular linear combination of spherical harmonics.
This combination is such that while bandlimited within a certain
spectral interval of interest, the functions maximize their spatial
energy over a certain spatial region of interest, preserving orthog-
onality over the entire sphere as well as over the chosen spatial
domain. The trade-off arises because bandlimited expansions can-
not be spatially limited, or vice versa, which is a consequence of
the Paley–Wiener theorem (Daubechies 1992; Mallat 1998), and
because spatial concentration is inversely proportional to spectral
concentration, which is a consequence of the Heisenberg inequality
(Percival & Walden 1993; Narcowich & Ward 1996; Freeden &
Michel 1999; Wieczorek & Simons 2005).

Only one Slepian function is the spatially ‘best’-concentrated
function for a given target region R on the surface of the sphere
�. The complete solution to the ‘concentration problem’ as put
forth by Simons et al. (2006) contains an entire basis set of func-
tions which are eigenfunctions of the spatio-spectral localization
(bandlimitation followed by spatial limitation) projection operator.

These eigenfunctions are all orthogonal to each other over the re-
gion R, which can have an arbitrarily complex shape, and they are
furthermore also orthogonal over the entire globe �. The eigenval-
ues embody the level to which the energy of the spatial functions
is confined to the region of interest R. Well-concentrated functions
are ‘large’ within the region and have eigenvalues close to one.
These can be used to approximate bandlimited signals inside the
region of interest. The rest of the set consists of poorly concen-
trated, nearly-zero-eigenvalue functions that are ‘small’ within R
but large in the complementary region �\R. Those functions are
suitable for approximating bandlimited signals outside the spatial
region of primary interest.

Taken together, the Slepian basis set is merely a unitary linear
transformation of the spherical-harmonic basis, but it is the spa-
tial region of interest, built into their construction via quadratic
maximization, that leads to their efficiency for modelling regional
signals. A small subset is ‘large’ in the region R, the vast majority
is ‘small’ over R. The double orthogonality of the Slepian func-
tions, both over R and over �\R is a property that is convenient
and very welcome on statistical grounds, for example, when inver-
sions for the source or estimations of the power spectral density
of the field components or the overall potential are being made on
the basis of actual satellite data (Simons & Dahlen 2006; Dahlen
& Simons 2008; Simons et al. 2009; Plattner & Simons 2013).
No such attempts are being made here. It finally should be stated
that other data-based inversion approaches may provide the desired
(double) orthogonality of the basis functions (e.g. Hwang 1993;
Górski 1994; Xu 1998; Schachtschneider et al. 2010, 2012; Slobbe
et al. 2012), but Slepian functions are the only ones that achieve this
feat in a fully analytical, and easily computable framework, from
prior considerations of the geometry of the region of interest or data
availability.

In summary, and relating back to the objective in this paper, which
is to study the spectral signature of the Earth’s magnetic field over
continents and oceans separately, the Slepian functions provide an
optimal basis, or else, a set of windowing functions, to model, anal-
yse or represent, the magnetic potential within non-overlapping ge-
ographical regions. In a decomposition where the entire bandwidth
of the original model is being used, but selectively truncated expan-
sions into Slepian functions are formed from the original spherical-
harmonic coefficients, the fit of the signal within individual geo-
graphical regions is effectively maximized, while at the same time,
edge effects, which lead to distortions in their spherical-harmonic
representations, are minimized. Counil et al. (1991) demonstrated
that differences between the field in continental and oceanic crust
modelled exclusively using spherical-harmonic functions may be
influenced by edge effects. Using Slepian functions, global signals
can be decomposed into effectively regional models that best ap-
proximate and thus separate the field over the areas of interest, and
whose spherical-harmonic spectrum can be studied robustly. Ulti-
mately, our objective should be to use the separation of the magnetic
fields over the continents and oceans for geological inference of the
magnetization structure of the respective domains (e.g. Gubbins
et al. 2011), but this goal remains out of the scope of the present
contribution.

The Slepian decomposition method can be applied to mag-
netic fields from other planetary bodies with sufficient spherical-
harmonic model resolution and identifiable regions of interest. The
technique can also be used in other areas where spatial data are com-
monly described by spherical harmonics such as ocean or glacial
signals in gravity models (e.g. Reigber et al. 2005; Slobbe et al.
2012; Harig & Simons 2012) or when interpreting seismic shear
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wave velocity models (e.g Becker & Boschi 2002; Ritsema et al.
2010) but also in astrophysics (e.g. Peebles 1973; Hauser & Peebles
1973) and cosmology (e.g. Tegmark 1997; Oh et al. 1999).

Regional modelling can be achieved by other methods, such as
via harmonic splines (Shure et al. 1982 1985; Amirbekyan et al.
2008), (Revised) Spherical Harmonic Cap Analysis (Haines 1985;
Thébault et al. 2006) and various other localizing techniques in-
cluding wavelets (e.g. Holschneider et al. 2003; Lesur 2006). Each
method has advantages over global spherical-harmonic analysis for
local regions. Schott & Thébault (2011) discuss the merits and limi-
tations of each approach in detail. However, none of the above tech-
niques attempts to formally optimize field separation over arbitrary
regions with irregular boundaries from a global model consisting
of spherical-harmonic coefficients. In this respect the approach by
Slepian functions is unique and suited to the problem of studying
the contributions to the global spherical-harmonic power spectrum
that arise from distinct geographic regions, continents and oceans,
and to assess their spectral characteristics individually.

Several high-quality lithospheric field models are available for
study. Much use has been made of the excellent satellite vector
data available from the Ørsted, CHAMP and SAC-C missions be-
tween 1999 and 2010. Models of the lithospheric field include satel-
lite data-only models such as MEME (Thomson et al. 2010) and
POMME7 (Maus et al. 2010), and models including data from sur-
face, marine and aeromagnetic surveys such as EMAG2 (Maus et al.
2009). The spherical-harmonic expansion coefficients of these litho-
spheric models (the ‘Gauss coefficients’) typically agree to about de-
gree 80. We restrict our study to the crustal field between spherical-
harmonic degrees 16–72 using the Gauss coefficients from the MF7
model (Maus et al. 2007). Further improvements to lithospheric field
models are anticipated with data from the ESA Swarm satellite mis-
sion (Friis-Christensen et al. 2006).

We use a spherical Slepian-function decomposition of the field
over the continents and their complement, the oceans, to investi-
gate the differences between the field over those regions that can be
identified from the spherical-harmonic power spectra. In Section 2
we review some basics of the spherical Slepian-function decom-
position and establish the framework for its description. Originally
developed as low-pass bandlimited functions, we also describe a
decomposition using bandpass Slepian functions. For both of these
we demonstrate how to decompose a field model of Gauss coef-
ficients into separate regions. In Section 3 we present the results
for the crustal magnetic field with an analysis of the trade-off be-
tween spatial and spectral accuracy that arises from the spectral
coupling between each region. In Section 4 we discuss our findings
and Section 5 concludes the paper.

2 M E T H O D O L O G Y

Before we proceed, we should caution the reader that history has
decided that the commonly used symbol for the scalar Gauss ex-
pansion coefficients of the potential at spherical-harmonic degree
l and order m should be gm

l . In more recent history (e.g. Simons
et al. 2006; Simons & Dahlen 2006), we have used gα(θ , φ) for the
αth bandlimited scalar Slepian function evaluated at colatitude θ

and longitude φ on the unit sphere, and gα,lm for the expansion co-
efficients of the Slepian functions in the spherical-harmonic basis.
When we collect the coefficients gα,lm for the αth Slepian functions
into a (column) vector, we write gα , when we collect the expansion
coefficients of all of the Slepian functions, column by column, in
to a matrix, we write the results as G, and when we collect the

Slepian functions themselves, evaluated as a function of colatitude
and longitude, into a column vector, we write g(θ, φ). At the risk of
antagonizing our forebears we shall use vm

l for the (Gauss) expan-
sion coefficients of the potential V, and collect them in a column
vector v.

2.1 Spherical harmonics

Magnetic fields originating inside or outside the Earth can be ap-
proximated by a scalar potential V that satisfies Laplace’s equation,

∇2V = 0, (1)

that is, it is harmonic outside the source region. From this potential,
the magnetic field B is obtained by

B = −∇V . (2)

In spherical coordinates (r, θ , φ) the harmonic potential of the
internal field is conveniently represented by a spherical-harmonic
expansion to a certain bandwidth L,

V (r, θ, φ) = a
L∑

l=1

(a

r

)l+1 l∑
m=−l

vm
l Y m

l (θ, φ), (3)

where Y m
l (θ, φ) is a real spherical surface harmonic of degree l

and order m, the Gauss coefficients vm
l define the weightings of the

individual harmonics, and a is a reference radius for the expansion
(typically the Earth’s mean radius, 6371.2 km), which is valid when
r ≥ a. Here, the vm

l and v−m
l replace the gm

l and hm
l in the traditional

geomagnetic notations.
Spherical surface harmonics are orthogonal over the whole sphere

�: when l �= l′ or m �= m′,∫
�

Y m
l (θ, φ)Y m′

l ′ (θ, φ) d� = 0. (4)

In geomagnetism, the normalization (i.e. the non-zero value of
eq. 4 when l = l′ and m = m′) is usually that due to Schmidt (see
Blakely 1996). The spherical-harmonic power spectrum Rl is then
defined as the squared magnitude of the magnetic field at degree l
averaged over a spherical surface of radius r, which, in this Schmidt
normalization, amounts to (Mauersberger 1956; Lowes 1966, 1974;
Sabaka et al. 2010):

Rl (r ) = (l + 1)
(a

r

)2l+4 l∑
m=−l

(
vm

l

)2
. (5)

We do not speak of ‘spectral densities’ since we do not report
averages per spherical-harmonic degree but rather totals. A ‘flat’
power spectrum in the sense of eq. (5) is not ‘white’, as ‘whiteness’
should imply that the spatial autocorrelation is a delta function
(Dahlen & Simons 2008, their eqs 33 and 34). It is important to
heed the implications of this particular definition for a physical
interpretation (Hipkin 2001; Maus 2008).

2.2 Slepian functions

2.2.1 Notation and objective

Spherical surface harmonics are functions of global support that
can be converted, by a unitary linear transformation, into a spheri-
cal Slepian basis whose energy is concentrated onto specific patches
of the sphere (Wieczorek & Simons 2005; Simons et al. 2006). A
detailed review of the construction and properties of 1-, 2- and 3-D
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Slepian functions is given by Simons (2010). Here, we present a
slightly different notation from that previously used by these au-
thors. Both notations are equivalent, but in this paper we rely more
on vector–matrix operations than on the explicit summations that
have been mostly used elsewhere. First, we consider some elemen-
tary mathematical definitions.

To allow for computations other than in geomagnetism, we in-
clude the l = 0 monopole term in what follows. Spherical surface
harmonics up to degree and order L can be expressed as a vector of
(L + 1)2 elements, each of which is a function of position (θ , φ) on
the unit sphere:

y(θ, φ) =
[

Y 0
0 (θ, φ) · · · Y m

l (θ, φ) · · · Y L
L (θ, φ)

]T
. (6)

The ordering of the spherical harmonics Y m
l is naturally arbitrary.

The notation is such that all boldface lower-case characters represent
column vectors and boldface upper-case represents matrices. In
geomagnetism, the monopole harmonic (Y 0

0 ) is usually ignored (or
set to zero), but we include it in this analysis to prevent loss of
generality for other applications.

On a unit sphere, the potential V(θ , φ) up to degree L is
represented in a spherical-harmonic basis by a single (L + 1)2-
dimensional column vector of Gauss coefficients, v. The potential
on the surface is obtained from these Gauss coefficients as

V (θ, φ) = vTy(θ, φ) = v · y(θ, φ). (7)

The representation of the potential in a spherical-harmonic spectral-
domain basis by the lower-case boldface symbol v, which lacks
a dependence on (θ , φ) distinguishes it from the space-domain
potential V(θ , φ) in our notation.

Spherical Slepian functions (hereafter simply: Slepian functions)
are an alternative basis,

g(θ, φ) =
[

g1(θ, φ) · · · gα(θ, φ) · · · g(L+1)2 (θ, φ)
]T

. (8)

Each of the entries in eq. (8) is a basis function that is linearly
related to the surface harmonics by the expansion

gα(θ, φ) = gT
αy(θ, φ) = gα · y(θ, φ). (9)

As in eq. (7), our notation distinguishes the spatial-domain Slepian
functions gα(θ , φ) from their expansion coefficients gα in the
spherical-harmonic basis. Slepian basis functions are orthonormal
over the unit sphere so that

gα · gα′ =
{

1 if α = α′,

0 otherwise.
(10)

The Slepian basis g(θ, φ) is produced from the spherical surface har-
monic basis y(θ, φ) by multiplying the latter by the unitary matrix
which is given by

GT =

⎡
⎢⎢⎣

gT
1
...

gT
(L+1)2

⎤
⎥⎥⎦ , GGT = I. (11)

The matrix G is constructed by optimization, as will be shown
in the next section, to localize the solution over specified areas or
regions (and their complements), for a given bandwidth L. Note that
the regions of interest do not have to be connected or contiguous,
but they must be non-overlapping to preserve orthogonality between
different constructions. For the case of unconnected continental
regions on the Earth, and the complementary oceanic domain, a
single optimization procedure determines a complete set of basis

functions, which naturally separates into those basis functions that
are well localized over either of the two distinct domains:

GTy(θ, φ) =
[

GT
iny(θ, φ)

GT
outy(θ, φ)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ, φ)

...

gK (θ, φ)

gK+1(θ, φ)

...

g(L+1)2 (θ, φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

gin(θ, φ)

gout(θ, φ)

]
, (12)

where the index K denotes the last element of the functions pri-
marily concentrated in the first domain, subscripted ‘in’ (that is,
inside the region of interest), and K + 1 denotes the first element
of the functions concentrated in the other domain, subscripted ‘out’
(outside the region of interest, inside of the complement). The basis
functions of domain ‘in’ are approximately non-zero only within the
chosen region R, while those of domain ‘out’ are concentrated out-
side R. The value of K depends on the bandwidth and the fractional
area of the ‘in’ region. With this type of a spherical harmonic-to-
Slepian transformation we restrict ourselves to analysing only one
spherical shell (e.g. the surface) at a time. Simons & Dahlen (2006,
their section 6.3) discuss aspects of harmonic continuation using
the Slepian basis.

2.2.2 Determination of the Slepian basis

The Slepian functions span a linear subspace of y(θ, φ) in which
the energy, or sum-squared function value, over R is maximized. At
this point the geometry of the region under consideration enters the
calculation. We compute the Gram matrix of energy in R as

D =
∫

R
y(θ, φ)yT(θ, φ) d� (13)

=
∫

R

⎡
⎢⎢⎣

Y 0
0 Y 0

0 · · · Y 0
0 Y L

L
...

. . .
...

Y 0
0 Y L

L · · · Y L
L Y L

L

⎤
⎥⎥⎦ d�. (14)

This ‘localization’ matrix is symmetric and the subspace of maxi-
mum energy is readily obtained by eigenvalue decomposition. The
eigenvalues and eigenvectors of D are defined as

DG = G�, (15)

where each column of G contains one eigenvector and � is a diag-
onal matrix with the corresponding eigenvalues,

� = diag
(
λ1, · · · , λα, · · · , λ(L+1)2

)
. (16)

The symmetry of D provides that all eigenvalues are real and positive
(or zero) and that all eigenvectors are orthogonal, which makes
G unitary. Furthermore, each eigenvalue λα defines the fractional
energy (over R compared to �) that is represented in the projection
gα(θ, φ) = gα · y(θ, φ). The eigenvalue problem (15) is equivalent
to the maximization of λ for functions given the available bandwidth
L. The Slepian functions in this discussion have been perfectly
bandlimited spectrally, to degree and order L.
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The eigenvalues λα are characterized by a spectrum of near-unity
values separated from near-zero values by a narrow transition re-
gion. This shape is the motivation for the heuristic decomposition
into K ‘in’ and (L + 1)2 − K ‘out’ functions, where λK ≈ 0.5. It is
generally not possible to separate perfectly the energy of the func-
tions that concentrate inside and outside R in this manner. Hence,
there will be spatial leakage between the two domains ‘in’ and ‘out’,
and the energy of the leakage depends on the eigenvalues, which
are close to (but smaller than) one, λα � 1, when α ≤ K, and greater
than (but close to) zero, λα � 0, when α > K.

The diagonalization is reminiscent of Principal-Component
Analysis (PCA, e.g. Jolliffe 2002) with the exception that PCA
traditionally finds linear subspaces that concentrate data variance
rather than basis-function energy. Slepian eigenvectors and eigen-
values can also be considered to result from singular-value decom-
position (SVD) if we consider the integral in (14) as a ‘normal’
matrix, the product of a matrix and its transpose, as arises in in-
version problems (Simons 2010). The elements of D are evalu-
ated by numerical integration, or analytically in certain circum-
stances; see Wieczorek & Simons (2005) and Simons et al. (2006,
2009). When the region of concentration has the symmetry of a
polar cap or an antipodal pair of polar caps (Simons & Dahlen
2006), the matrix G can be found without the intermediary of D,
through commutation relations. Numerically, this property is very
attractive.

The eigenvalues λα cannot exceed unity because no orthonor-
mal projection can provide more fractional energy than any of the
spherical surface harmonics over the whole sphere. For eigenvalues
near one, most of the energy of the projection is contained within
R. When the eigenvalues are near zero, most energy of the projec-
tion is contained outside R. The sum of the eigenvalues λα gives
the ‘Shannon number’ (Simons et al. 2006), which can directly be
computed from

K = (L + 1)2 A

4π
, (17)

where A is the surface area (in steradians) of R. The Shannon num-
ber, a space–bandwidth product, approximates the dimension of
the space of approximately space- (to R) and band- (to L) limited
functions on the sphere. It corresponds to the number of functions
that usefully project the energy of the spherical harmonics onto the
target region R.

It is reasonable to omit certain spherical-harmonic degrees from
the Slepian functions if there is no energy in those degrees. For
instance, in crustal field models, due to the inability to sepa-
rate the dominant core field contribution at degrees l = 12–15,
Gauss coefficients of degrees l < l0 = 15 are generally set to
zero. In such a case, the corresponding Slepian basis (8) has (L +
1)2 − l2

0 elements and the Shannon number, modified after (17),
would be

K = [
(L + 1)2 − l2

0

] A

4π
. (18)

There are corresponding changes in all related equations that refer
explicitly to the dimensions of vectors and matrices, which are, how-
ever, straightforward to adapt. The resulting models would thus be
based on bandpass Slepian functions rather than the low-pass ones
which have been the subject of all previous work using spherical
Slepian functions known to us.

2.2.3 Decomposition of the Gauss coefficients

A harmonic potential V(θ , φ) can thus be decomposed into parts
(almost) localized inside and outside a region R as follows:

Vin(θ, φ) = (
GT

inv
)T

gin(θ, φ), (19)

Vout(θ, φ) = (
GT

outv
)T

gout(θ, φ). (20)

The potential over the entire sphere is a superposition of these partial
expansions,

V (θ, φ) = Vin(θ, φ) + Vout(θ, φ). (21)

Furthermore, the spherical-harmonic representations of the two re-
gional potentials become the projections

vin = (
GinGT

in

)
v, (22)

vout = (
GoutG

T
out

)
v. (23)

Eqs (22) and (23) imply a transfer of energy from each of the
spherical-harmonic elements in the original to the individual re-
gional expansions, although the matrices (GinGT

in) and (GoutG
T
out)

are diagonally dominant. There is a trade-off between the spec-
tral coupling and the spatial leakage from one domain to another:
decreasing the amount of coupling will tend to increase the spa-
tial bias by reducing the regional selectivity of the decomposition.
The behaviour can be understood on the basis of the detailed con-
siderations made by Simons & Dahlen (2006) for the case where
linear functionals of the data result in signal estimation from noisy
and incomplete observations, and by Dahlen & Simons (2008) who
treated the case where quadratic data functionals result in direct
estimates of the power-spectral density from similar observations.
There are more connections implicit in the early theoretical work
by Kaula (1967), Spencer & Gubbins (1980), Whaler & Gub-
bins (1981), and in the practical studies by Slobbe et al. (2012),
Trampert & Snieder (1996) and Schachtschneider et al. (2010), to
name a few examples from geodesy, seismology and geomagnetism,
respectively. However, the material in this section does not appear
explicitly in those papers, nor has the algorithm proposed in the
next section been applied before.

2.2.4 Algorithm

We have implemented the ocean–continent magnetic-field decom-
position using the following five algorithmic steps for which we
have made the computer code freely available:

(i) A file containing the latitudes and longitudes of the boundary
outlines was generated to determine the spatial region of interest R.
The average spacing between points was approximately 10 km.

(ii) A localization matrix D was computed for the region of in-
terest on the sphere using eq. (14) with the bandwidth L = 72.
This is the most time-consuming step, which, however, benefited
from a parallel implementation which reduced computation time to
a matter of minutes on a contemporary eight-processor machine.

(iii) Slepian basis functions for the region were generated using
the eigenvector decomposition of the localization matrix of eq. (15).
They were sorted by eigenvalue, from the largest to the smallest.

(iv) The spherical-harmonic coefficients were converted into
equivalent Slepian coefficients using eqs (19) and (20).
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(v) The Shannon number K was used to separate the Slepian
coefficients into the two complementary regions of interest, and the
Slepian coefficients were transformed back to spherical-harmonic
coefficients using eqs (22) and (23).

The spherical-harmonic coefficients for each region can be treated
as usual, for example, to find field components at a series of points
for plotting in map form, or squared, summed and scaled to give a
power spectrum as per eq. (5). With regards to this last operation, it is
to be noted that this does not amount to a ‘multitaper’ power spectral
estimate in the sense of Wieczorek & Simons (2007) or Dahlen &
Simons (2008, their eqs 130 and 139). In the present approach we
focused on containing spatial bias by achieving field separability
over both regions at the full resolution of the data. As shown in
the previous section and in the examples to follow, this leads to a
spectral coupling with a manageable bias, or effective bandwidth of
resolution, for the spectral estimate, whose variance, unlike in both
studies cited, we did not attempt to minimize. The advantage of our
present approach is that it stays intuitively close to geomagnetic
practice while alleviating the drawbacks of forming ‘periodogram’
spectral estimates with simple binary masks for the continents and
the oceans—a case treated in detail by Dahlen & Simons (2008,
their section 5). Field separation and spectral estimation are different
statistical problems, one linear in the data and the other quadratic:
our approach of basis projection, truncation and reprojection, for
evaluation in the space domain and spectral estimation, serves a dual
purpose that is closer in spirit to the former, without excessively
violating the basic premise of the latter. Lewis & Simons (2012)
can be consulted for an example for the Martian lithospheric field,
where the focus lies on the estimation and parameterized inversion
of the power spectrum rather than on separable field representation
with the quadratic spectrum as a by-product, as is our case.

3 C RU S TA L F I E L D D E C O M P O S I T I O N

The lithospheric field decomposed is the model MF7 of Maus
et al. (2007), which extends to spherical harmonic degree 133.
This model, derived for use at the Earth’s mean radius (6371.2 km),
is based on CHAMP satellite measurements up to April 2010. The
model is suitable for the analysis of long-wavelength features of the
lithospheric field, as shorter wavelengths become distorted due to
data processing and model regularization. We thus examine the field
at the spherical-harmonic degrees l = 16–72, as degrees beyond 72
are subject to along-track filtering of the data and stronger a priori
smoothing (Maus et al. 2008). The boundaries of the continental
crust are approximated from global relief images of the NOAA
ETOPO2v2 map. In most regions these images show clear features
at the edges of continental and oceanic regions, which can be con-
firmed by comparison with oceanic crust boundaries of Müller et al.
(2008) or Counil et al. (1991) among others.

Fig. 1 shows the radial component of the magnetic field of MF7
along with the continental boundaries. We employ Slepian func-
tions to decompose the scalar potential into the continental domain
and its complement, the oceanic domain. The figure includes the
shoreline as a reference so that submarine continental crust is also
distinguishable. We use the radial component of the magnetic field
to assess the decompositions visually in the following sections. We
analyse the results by studying spherical-harmonic power spectra
(eq. 5), even though the optimal decomposition of the potential is
not necessarily also optimal for its field components (Plattner et al.
2012). The number of Slepian eigenfunctions and their eigenvalues
for each region is computed using the appropriate Shannon num-

Figure 1. The radial component of the crustal magnetic field MF7 (Maus
et al. 2007) for the spherical harmonic degrees l = 16–72 (units: nT). The
green line shows the continental crust boundaries and the black line denotes
the shorelines for reference. The colour scale is saturated: the field values
reach a minimum of −288 nT and a maximum of 397 nT in places.

bers from eqs (17) or (18). Some large-scale lithospheric anomalies
are missing from the model, because the lowest spherical-harmonic
degree considered is 16. Purucker et al. (2002) have argued that
the large anomalies in southern North America could be the edge
effects of large-scale cratonic magnetization, which is not contained
in truncated lithospheric field models. In this paper we cannot study
magnetization of the continents or the oceans, only the magnetic
field itself and how it is expressed over the individual domains.

3.1 Decomposition using low-pass Slepian functions

From the MF7 model we use the first 5328 Gauss coefficients (up
to degree and order 72) and include the g0

0 coefficient (set to zero,
as are degrees 1–15) for the purposes of the Slepian decomposition.
A symmetric (5329 × 5329) localization matrix D of eq. (14) is
computed from a list of 10 151 (latitude, longitude) pairs represent-
ing the continental shelf boundary, closed by spline interpolation.
The eigenvectors of the localization matrix are sorted by decreasing
eigenvalue and then the Gauss coefficients are converted into the
equivalent complete description by Slepian function coefficients.

Fig. 2 shows the radial components of the continental and the
oceanic signals expressed in the Slepian basis. In both cases, the
signal outside the chosen area is very small, though in neither case
does it vanish completely. Moreover, certain features generate sys-
tematic reverberation, or ringing, in the adjacent regions—such as
that of continental signal south of Australia (upper panel). The com-
puted Shannon number assigns 2170 Slepian basis functions to the
continental crust and 3159 to the oceanic crust. Judging from the
corresponding eigenvalues, about 5.0 per cent of the energy of the
continental basis is outside of the boundaries; while for the oceanic
basis, some 3.4 per cent leaks into the continental domain. From a
spatial integration of the original signal and its comparison to the
reconstruction over the partial domains, more than 98.2 per cent of
the energy of the spatial signal is recovered in the continents, while
94.9 per cent is recovered over the oceans.

Fig. 3 shows the power spectra of the decomposed signals. In us-
ing eq. (5) for the computations in the case of the decomposed fields,
we continue to refer to the surface area of the entire sphere, even
though we have effectively zeroed out the contributions from the
regions outside those of interest. A different definition of ‘power’
spectrum might have scaled our results by the areas of the re-
gion of interest. On the other hand, a different interpretation of our



142 C. D. Beggan et al.

Figure 2. The radial component of the MF7 magnetic field data decomposed
into (a) continental and (b) oceanic signals (units: nT). This decomposition
uses low-pass Slepian functions that include spherical-harmonic degrees 0–
72, although the input model contains only degrees 16–72. The separation
of the basis set happens at the Shannon number, K = 2170 for the continents,
which leaves 3159 functions to approximate the signal over the oceans.

computations might thus interpret our comparative results as ‘en-
ergy’ spectra rather than power spectra. Whatever the preference of
the reader, the computer code that accompanies this paper can be
easily adapted to make accommodations for taste.

For the oceanic region, degree 16 and the highest degrees (around
70) stand out. Degree 16 corresponds approximately to a wave-
length of 2500 km, possibly present in the (north–south) direction
parallel to the mid-ocean ridges. Degree 70 corresponds approxi-
mately to wavelengths of 550 km, which is perhaps the longitudinal
wavelength of the north–south oriented magnetic ‘stripes’ visible
to satellites in the Atlantic basin. The spectrum of the continental

region shows much more variability than the oceanic signal. There
are many peaks that follow those of the global spectrum. The peak
at degree 25 is present in the oceanic signal but otherwise the large
peaks are limited to the continents. Overall, the power from the con-
tinental region is significantly greater than the power of the oceanic
region. This is most likely owing to the larger volume of magnetic
rocks in the continents despite their smaller areal extent.

Fig. 3 also shows explicitly that the power spectrum of the sum
of the decomposed signals is identical to the global spectrum of the
original, while it can be shown that the sum of the partial spectra is a
good, though not perfect, approximation to the global spectrum. We
also see that there is some spectral leakage into the degrees below
16, though this is quite low compared to the power elsewhere. At
this point, we also note that we have decomposed other lithospheric
field models including MF6 (Maus et al. 2008) and POMME (Maus
et al. 2010) which gave similar results to those shown in Figs 2
and 3.

3.2 Decomposition using bandpass Slepian functions

Fig. 4 shows the power spectra for the model decomposed in band-
pass Slepian functions of degrees l = 16–72. The results are similar
to the low-pass l = 0–72 decomposition shown in Fig. 3. Spatial
leakage is slightly more prominent than previously, as deduced from
the eigenvalues of the solution: 5.7 per cent of energy out of the
continental basis and 3.6 per cent from the oceanic basis. For ex-
ample, at the North Pole (plot not shown) the leakage of continental
signal is more pronounced, though overall the spatial leakage is still
quite small.

In the oceanic spectrum, the peak at degree 16 is stronger than for
the low-pass Slepian functions, since with the bandpass functions,
coupling to the degrees 0–15 is excluded. There are also power
increases at higher degrees.

3.3 Individual continents and ocean basins

We next decompose the field model MF7 into five continental
areas—Americas (North, Central and South), Africa, Eurasia, Aus-
tralia and Antarctica—and four ocean basins—Atlantic, Pacific,
Indian and North Pole. The field over each decomposed region is
calculated from the original MF7 magnetic potential model (not
from the decomposed components of the previous sections). Each
time, the separation was performed using the appropriate Shannon
number for the area under consideration.

Figure 3. Power spectra of the crustal magnetic field MF7, globally (‘input’), and with the signals decomposed into continental and oceanic domains using
low-pass Slepian functions that contain all spherical-harmonic degrees from 0 to 72. Also shown is the spectrum of the sum of the continent and ocean model
fields, which is identical to the global spectrum. Units: nT2.
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Figure 4. Power spectra of the crustal magnetic field MF7, globally, and with the signals decomposed using bandpass Slepian functions that contain only
spherical-harmonic degrees between 16 and 72, and the spectrum of the sum of the decomposed model fields, as described in the text. Units: nT2.

Figure 5. The power spectrum of the crustal magnetic field decomposed into nine different regions. Continental regions are presented in the upper plot and
oceanic regions are in the lower one. The sum of the partial spectra is a very good approximation to the global spectrum. Units: nT2.

Fig. 5 shows the power spectra of the decomposed regions. The
sum of the partial spectra for these nine parts approximates very
well, but does not exactly match, the global MF7 spectrum. There
are similar contrasts between continental and oceanic signals as
noted previously. For instance, continental spectra seem to ‘flatten’
towards the highest harmonic degrees, while the oceanic spectra
tend to start to increase at higher degrees. There is much greater
roughness in the spectra of the continental regions than in those
of the oceanic ones. Eurasia and the Americas, in particular, show
most departure from a smooth curve, exhibiting a series of crests and
troughs in their spectra. The spectrum of the Americas contains one
prominent peak close to degree 60 whereas that of Eurasia contains
at least three peaks and displays overall much greater power within

the degree range 50–70 than any other continental region. All of
the continental regions are characterized by power that diminishes
significantly from the higher to the lower degrees.

In the oceanic signals, only the Pacific spectrum contains a clear
peak at degree 16, which was notable in the all-oceanic signal
shown in Fig. 3. Hence, whatever the cause of this long-wavelength
variation, it most likely originates in the Pacific Ocean. The Pacific
Ocean spectrum also exhibits much more variability than that of
other oceanic regions. However, it does not account for much greater
power than the spectra of the Atlantic or Indian Oceans, although
its area is twice as large. There are also differences in smoothness
of the spectra. The Pacific and Atlantic Ocean spectra are much less
smooth than those for most of the continental regions, except for
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that of the Americas, which also exhibits abrupt changes in slope.
The North Pole is included in the oceanic areas, but it is questionable
whether it is possible to obtain any information from the area by this
analysis, as the area of the region is less than 1 per cent of the whole
globe and it lies within the satellite polar gap. Thus it is unlikely
to have significant information or power at any of the wavelengths
analysed here.

3.4 Spectral coupling in the decomposed signals

Quantifying the spectral coupling or leakage within a decomposed
signal allows us to determine the resolution of our power spectral
results. The coupling is related to the size of the region of interest,
its shape, the degree resolution of the model and the truncation level
of the bases. Coupling between degrees and orders arises from the
separation of the matrix GT that we encountered in eq. (11), which
breaks its unitarity. Summation over the orders in the squared GinGT

in

and GoutG
T
out projection matrices quantifies the spectral coupling be-

tween individual degrees in the power spectral estimate of eq. (5)
made with Gauss coefficients transformed via eqs (22) and (23), by
analogy with properties of spectral estimators discussed by Dahlen
& Simons (2008, their eqs 57, 131 and 140). For example, the spec-
tral coupling matrix Cin = (GinGT

in)2 for the ‘in’ region yields a
(732 × 732) matrix. The coupling value for each degree l is com-
puted by summing over the orders of Cin, and dividing by (2l + 1),
resulting in a (73 × 73) matrix. Ideally, these summation matrices
should closely approximate the identity matrix, indicating a lack
of coupling between degrees (but remember that eq. 5 contains a
sum over the orders), but such a situation is not generally achiev-
able when regional resolution over partial spatial domains is being
sought.

Fig. 6 shows the values of the coupling matrices for low-pass
degree 0–72 Slepian functions with Shannon-number truncation.
The behaviour of the bandpass functions is qualitatively similar and

Figure 6. Coupling matrices for the spherical-harmonic power spectrum of the domain-decomposed fields. (a) Coupling when using K = 2170 Slepian
functions to concentrate over the continents, and (b) when using (L − 1)2 − K = 3159 Slepian functions over the oceans. The values shown at each degree
contain the normalization factor (2l + 1), as defined in Section 3.4. The lower panel shows the coupling of degree l = 36 of the continental (solid black) and
oceanic (dashed grey) decomposition, on a log scale. A linear plot of the same data is shown in the left-hand corner.
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will not be illustrated here. The coupling is plotted on a logarithmic
scale to emphasize the detail in the matrices. Coupling is evident
between degrees 0 and 15 which accounts for the spectral leakage
seen in Fig. 3. From degrees 16–72 the coupling of both regions
shows a strong peak at the central degree, with narrow flanks. The
lower panel of Fig. 6 shows the coupling of degree l = 36 for the
continental ‘in’ and oceanic ‘out’ domains (i.e. the 37th row of
the low-pass coupling matrices). There is a strong peak at the target
degree, with narrow shoulders falling to approximately zero at about
six spherical-harmonic degrees on either side. Except at the low-
degree and high-degree edges of the domain, the coupling matrices
are roughly constant-diagonal, which implies that in the interior the
bandwidth of our spectral estimate is about 12 spherical-harmonic
degrees. The effective bandwidth, in terms of its full-width at half
height, is much smaller than that, only about two or three degrees.
Information from degrees outside this band does not couple strongly
into the spectral estimate of the decomposed fields at the target. A
comparison of this coupling with the behaviour of the ‘periodogram’
and ‘(multi)taper’ estimates, derived and depicted by Dahlen &
Simons (2008, their Figs 4–7), illustrates that the method employed
in this paper is an effective way of localizing the power spectral
estimate both in the spatial and spectral domains.

To give a visual sense of how spectral coupling works under
our procedure, we illustrate it by simply decomposing models con-
taining only one or a few individual spherical-harmonic degrees at
a time. Using only coefficients from one spherical-harmonic de-
gree (and including all orders of that degree) of the global model,
we decompose it into oceanic and continental regions. The first
such experiment is shown in Fig. 7(a). We then progressively add
one extra model degree at a time, successively decomposing these
synthesized fields into continental and oceanic parts, and calcu-
lating the power spectrum, as shown in Figs 7(b)–(d) . The four
spherical-harmonic degrees are chosen from the higher end of the
spectrum where continental crust dominates, specifically degrees
55, 61, 64 and 68, where prominent peaks were seen to occur in
Fig. 3.

Fig. 7 shows the spectra of these decomposed signals. The peaks
as recovered relate to the input power spectrum via convolution
with the spectral coupling matrices of Fig. 6, as first shown by
Wieczorek & Simons (2005 2007) and generalized by Dahlen &
Simons (2008, their eqs 59, 135 and 140). Thus, the result for the
single spike in Fig. 7(a) is similar to the curves from the cross-
section of the coupling matrices in Fig. 6. As our spectral mean
squares refer to the whole sphere, and not just to the area of the

Figure 7. Decomposing strong peaks in the MF7 spectrum into oceanic and continental signals. These are taken at the four peaks in the global spectrum within
degrees 55–68. First the data of (a) one peak (l = 55), then the data of (b) two peaks (l = 55 and 61), then (c) three peaks (l = 55, 61 and 64) and finally (d) all
four peaks (l = 55, 61, 64 and 68) are analysed. Units: nT2.
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continents or oceans, due to its greater area, the power spectrum in
the oceanic signal is greater than that of the continents. If instead
of the low-pass Slepian functions, their bandpass versions are being
used, all relationships between degrees are altered, but the proce-
dure for their evaluation remains identical. The spectral coupling
matrix contains the information on the blurring that is caused by the
particular decomposition, and spike tests can be performed for vi-
sual guidance. The bandpass and low-pass Slepian-function model
decompositions are different. Since the crustal-field model does not
contain the lowermost degrees, neither should the decomposed sig-
nals. For this reason, we prefer the analysis using the bandpassed
Slepian functions, although Figs 3 and 4 show that the interpretative
differences will be minor.

When the power spectrum shows significant roughness, or when
the spectrum has a local slope that is significantly different from
zero (indicating a ‘non-flat’ spectral process), the coupling between
spherical-harmonic degrees induced by the decomposition will lead
to estimates that are significantly biased, as they would be with any
other partial-domain method (Dahlen & Simons 2008). In con-
trast, the spectral estimates for smoothly varying, flat or ‘moder-
ately coloured’ spectra will be approximately unbiased, if properly
scaled. The interpretation of what constitutes ‘moderate’ colouring
is to be made with reference to the effective bandwidth of the spec-
tral estimator. The comparison of the global power spectra in Figs 3
and 4 with the effective bandwidth of the estimator, as apparent
from Fig. 6, suggests that this interpretative approximation is justi-
fied. We thus conclude that the decomposition of the global crustal
magnetic field using Slepian functions into oceanic and continen-
tal portions not only provides an excellent approximation to the
individual fields in the space domain, but also leads to useful and
reliable representations of their power spectra. A complete multita-
per analysis in the vein of Dahlen & Simons (2008, their Section 7)
would provide more control over the variance of the power spectral
estimate, but given the clear-cut spectral separation of the source
model after the spatial decomposition in the case of the magnetic
field, the benefits would be largely statistical. However, should the
spectrum need to be known with its uncertainty to map this into un-
certainties on model parameters derived from it, such an approach
might still be preferable, as shown by Lewis & Simons (2012) for
the Martian magnetic field.

4 D I S C U S S I O N

In this work we employed spatio-spectrally concentrated spheri-
cal Slepian functions to decompose global geomagnetic models,
available as spherical-harmonic expansion coefficients, into their
regional contributions. Our experiments with the terrestrial litho-
spheric field indicate that there is a clear difference between the
magnetic signature of continents versus oceans, and provide a quan-
titative basis for its interpretation.

First, the continental field carries more than twice as much en-
ergy (mean-squared field over the sphere summed over all available
harmonics, defined in eq. 5) as the oceanic field, although the conti-
nental area is only ∼40 per cent of the surface. This can be explained
by the larger volume of the continental crust, although it should be
counterbalanced to some extent by extrusive oceanic basaltic lay-
ers with strong magnetization (Purucker et al. 2003; Gubbins et al.
2011). Secondly, the oceanic signal contains approximately equal
total power at all degrees, whereas the shape of the continental
power spectrum resembles that of the whole field (increasing to-
wards higher degrees and flattening slightly towards the end).

The oceanic spectrum arises from a combination of processes,
some natural and some inherent in the data processing, such as ran-
domly timed reversals of magnetic poles, non-uniform plate motions
and the smoothing effect of the satellite measurements from which
MF7 is derived. We conclude that the young, steadily regenerating
oceanic crust contains approximately equal power over all degrees,
whereas the more mature, slowly evolving, crust of the continents
possesses significantly more power in the higher degrees, due to the
thickness of the continents and the nature of their amalgamation.

As an additional experiment, we decomposed the historical core
field of the model gufm1 at the CMB (Jackson et al. 2000) into re-
gions of anomalously slow seismic shear wave velocities and their
complement (Grand 2002). These decompositions were produced
for every 10 yr for the time period 1590–1990, with the results indi-
cating that, approaching the present date, the spectral signatures of
the decomposed regions become increasingly indistinct, suggesting
that few unambiguously resolvable differences exist between them.
However, we concluded from examination of the coupling matrices
that when the range of spherical harmonics degrees is limited, such
as is the case with the core field, the spatio-spectral decomposition
is not sufficiently discriminant to justify strong conclusions.

5 C O N C LU S I O N S

Using spherical Slepian functions, both in their traditional low-pass
(for the degrees 0–72) and novel bandpass (for degrees 16–72) in-
carnations, we decomposed the global lithospheric magnetic field
model MF7, complete to spherical-harmonic degree and order 72,
into two regions: one that is localized over the continents, and its
complement which is localized in the ocean basins. The results
demonstrate that the continental region dominates the lithospheric
magnetic field, and also that the two regions have very distinct spec-
tral signatures. The oceanic signal appears to have approximately
equal power across all spherical-harmonic degrees while the conti-
nental signal shows increasing power as a function of degree.

Our method provides interpretable decompositions when the data
set has a smoothly varying spectrum (with respect to the effective
coupling bandwidth of the spectral estimate) and when the range
of spherical-harmonic degrees is sufficiently large. The lithospheric
field was a prime candidate for our analysis; in contrast, the core
field does not meet these criteria.

The analysis using Slepian functions is one of a range of lo-
calization methods that are applicable to a large number of (geo-
physical) studies where spherical-harmonic modelling is used. The
key advantages of Slepian functions are their harmonicity and dou-
ble orthogonality, both over the region of interest and over the
whole sphere, their ease of calculation, and their possible appli-
cation as basis functions to conduct linear inverse problems, or as
windowing functions to perform quadratic spectral analysis. Each
of those aspects has received a thorough theoretical treatment in
prior work. The method developed in this paper represents a hy-
brid form, whereby we approximated the signal of interest inside
of the individual regions of study using a truncated Slepian expan-
sion, and subsequently, we employed the traditional Mauersberger–
Lowes spherical-harmonics-based power-spectral estimation on the
space-domain results. We have shown how this resulted in appropri-
ately spatio-spectrally concentrated estimates both of the underlying
signals and their power spectra, and we showed how to interpret the
resolution of the resulting spectral estimate via a characterization
of its coupling (or leakage) kernel.
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Schott, J.J. & Thébault, E., 2011. Modelling the Earth’s magnetic field from
global to regional scales, in Geomagnetic Observations and Models, Vol.
5 of IAGA Special Sopron Book Series, pp. 229–264, eds Mandea, M. &
Korte, M., Springer.

Shure, L., Parker, R.L. & Backus, G.E., 1982. Harmonic splines for geo-
magnetic modelling, Phys. Earth planet. Inter., 28, 215–229.

Shure, L., Parker, R.L. & Langel, R.A., 1985. A preliminary harmonic spline
model from Magsat data, J. geophys. Res., 90, 11505–11512.

Simons, F.J., 2010. Slepian functions and their use in signal estimation
and spectral analysis, in Handbook of Geomathematics, Chapter 30, eds
Freeden, W., Nashed, M. Z. & Sonar, T., Springer.

Simons, F.J. & Dahlen, F.A., 2006. Spherical Slepian functions and the polar
gap in geodesy, Geophys. J. Int., 166, 1039–1061.

Simons, F.J., Dahlen, F.A. & Wieczorek, M.A., 2006. Spatiospectral con-
centration on a sphere, SIAM Rev., 48(3), 504–536.

Simons, F.J., Hawthorne, J.C. & Beggan, C.D., 2009. Efficient analysis and

representation of geophysical processes using localized spherical basis
functions, in Wavelets XIII, Vol. 7446, pp. 74460G, SPIE.

Simons, M., Solomon, S.C. & Hager, B.H., 1997. Localization of gravity and
topography: constraints on the tectonics and mantle dynamics of Venus,
Geophys. J. Int., 131, 24–44.

Slepian, D., 1983. Some comments on Fourier analysis, uncertainty and
modeling, SIAM Rev., 25(3), 379–393.

Slobbe, D.C., Simons, F.J. & Klees, R., 2012. The spherical Slepian basis
as a means to obtain spectral consistency between mean sea level and the
geoid, J. Geod., 86(8), 609–628.

Spencer, C. & Gubbins, D., 1980. Travel-time inversion for simultaneous
earthquake location and velocity structure determination in laterally vary-
ing media, Geophys. J. R. astr. Soc., 63(1), 95–116.

Tegmark, M., 1996. A method for extracting maximum resolution power
spectra from microwave sky maps, Mon. N. R. astr. Soc, 280, 299–308.

Tegmark, M., 1997. How to measure CMB power spectra without losing
information, Phys. Rev. D, 55(10), 5895–5907.
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