1,150 research outputs found
The Unpredictability of the Most Energetic Solar Events
Observations over the past two solar cycles show a highly irregular pattern
of occurrence for major solar flares, gamma-ray events, and solar energetic
particle (SEP) fluences. Such phenomena do not appear to follow the direct
indices of solar magnetic activity, such as the sunspot number. I show that
this results from the non-Poisson occurrence for the most energetic events.
This Letter also points out a particularly striking example of this
irregularity in a comparison between the declining phases of the recent two
solar cycles (1993-1995 and 2004-2006, respectively) and traces it through the
radiated energies of the flares, the associated SEP fluences, and the sunspot
areas. These factors suggest that processes in the solar interior involved with
the supply of magnetic flux up to the surface of the Sun have strong
correlations in space and time, leading to a complex occurrence pattern that is
presently unpredictable on timescales longer than active region lifetimes
(weeks) and not correlated well with the solar cycle itself.Comment: 4 page
Combined Gamma Ray/neutron Spectroscopy for Mapping Lunar Resources
Some elements in the Moon can be resources, such as hydrogen and oxygen. Other elements, like Ti or the minerals in which they occur, such as ilmenite, could be used in processing lunar materials. Certain elements can also be used as tracers for other elements or lunar processes, such as hydrogen for mature regoliths with other solar-wind-implanted elements like helium, carbon, and nitrogen. A complete knowledge of the elemental composition of a lunar region is desirable both in identifying lunar resources and in lunar geochemical studies, which also helps in identifying and using lunar resources. The use of gamma ray and neutron spectroscopy together to determine abundances of many elements in the top few tens of centimeters of the lunar surface is discussed. To date, very few discussions of elemental mapping of planetary surfaces considered measurements of both gamma rays and the full range of neutron energies. The theories for gamma ray and neutron spectroscopy of the Moon and calculations of leakage fluxes are presented here with emphasis on why combined gamma ray/neutron spectroscopy is much more powerful than measuring either radiation alone
Radioelements on Vesta: An Update
The main-belt asteroid 4 Vesta is the putative parent body of the howardite, eucrite, and diogenite (HED) meteorites. Because these achondrites have similar petrology, geochemistry, chronology, and O-isotope compositions, it is thought that most HEDs originated from a single parent body. The connection to Vesta is supported by a close spectroscopic match between Vesta and the HEDs and a credible mechanism for their delivery to Earth. Studies of the HEDs show that Vesta underwent igneous differentiation, forming a Fe-rich core, ultramafic mantle, and basaltic crust. Here we present the results of peak analyses applied to a gamma ray difference spectrum to determine the absolute abundances of K and Th. Data are compared to meteorite whole-rock compositions and other inner solar system bodies. The results, while preliminary, represent our present best estimates for these elements. Because the element signatures are near detection limits and not fully resolved, further analysis (e.g. using spectral unmixing) will be required for improved accuracy and to characterize systematic errors
Elemental bio-imaging of melanoma in lymph node biopsies
The spatial distribution of trace elements in human lymph nodes partially infiltrated by melanoma cells was determined by elemental bio-imaging. Imaging of 31P within the nodal capsule and normal lymph node tissue showed a clear demarcation of the tumour boundary, with a significant decrease in relative 31P concentration within the tumour. The location of the tumour boundary was confirmed by haematoxylin and eosin staining of serial sections and observation by light microscopy. Further enhancement of the tumour boundary was achieved by imaging the 31P/34S ratio. 31P/66Zn ratio images showed a decreasing ratio beyond the tumour boundary that extended into peritumour normal lymph node tissue. © The Royal Society of Chemistry
Gamma Ray and Neutron Spectrometer for the Lunar Resource Mapper
One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments
Gamma ray production in inelastic scattering of neutrons produced by cosmic muons in Fe
We report on the study of the intensities of several gamma lines emitted
after the inelastic scattering of neutrons in Fe. Neutrons were produced
by cosmic muons passing the 20t massive iron cube placed at the Earth's surface
and used as a passive shield for the HPGe detector. Relative intensities of
detected gamma lines are compared with the results collected in the same iron
shield by the use of Cf neutrons. Assessment against the published data
from neutron scattering experiments at energies up to 14 MeV is also provided
Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models
This study demonstrates the application of quantitative elemental bio-imaging for the determination of the distribution Cu, Mn, Fe and Zn in Parkinsonism mouse model brains. Elevated concentrations of these metals within the substantia nigra (SN) are suspected to play a role on the development of Parkinson's disease. Elemental bio-imaging employs laser ablation inductively coupled mass spectrometry (LA-ICP-MS) to construct images of trace element distribution. Quantitative data was produced by ablating the standard tissue sections and recording the mean signal intensity calibrated against multi level matrix matched tissue standards. The concentrations of Fe within the substantia nigra of the lesioned animals increased significantly when compared against control animals. Furthermore, the data was compared against solution nebulisation ICP-MS in which the whole substantia nigra was excised. The trends were the same for both methods; however the elemental bio-imaging method returned significantly higher concentrations. This was caused by dilution from inclusion of surrounding tissue of the SN during the excision procedure. © The Royal Society of Chemistry 2009
Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold
Citation: Gaire, B., Gatton, A., Wiegandt, F., Neff, J., Janke, C., Zeller, S., . . . Weber, T. (2016). Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold. Physical Review A, 94(3), 8. doi:10.1103/PhysRevA.94.033412We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes
Do Mesosiderites Reside on 4 VESTA? an Assessment Based on Dawn Grand Data
Almost a century ago, simple petrographic observations were used to suggest a close genetic link between eucrites and the silicates in mesosiderites [1]. Mesosiderites are composed of roughly equal proportions of silicates that are very similar in mineralogy and texture to howardites, and Fe, Ni metal (Fig. 1) [2]. This similarity has led some to conclude that mesosiderites come from the howardite, eucrite and diogenite (HED) parent asteroid [3, 4]. Subsequent petrologic study demonstrated a number of differences between mesosiderite silicates and HEDs that are more plausibly explained as requiring separate parent asteroids [5]. However, HEDs and mesosiderites are identical in oxygen isotopic composition, and this has been used to argue for a common parent 4 Vesta [6]
- …
