152 research outputs found
Interplay of 4f-3d Magnetism and Ferroelectricity in DyFeO3
DyFeO3 exhibits a weak ferromagnetism (TNFe ~ 645 K) that disappears below a
spin-reorientation (Morin) transition at TSRFe ~ 50 K. It is also known that
applied magnetic field induces ferroelectricity at the magnetic ordering
temperature of Dy-ions (TNDy ~ 4.5 K). Here, we show that the ferroelectricity
exists in the weak ferromagnetic state (TSRFe < T < TN,C) without applying
magnetic field, indicating the crucial role of weak ferromagnetism in inducing
ferroelectricity. 57Fe M\"ossbauer studies show that hyperfine field (Bhf)
deviates from mean field-like behaviour that is observed in the weak
ferromagnetic state and decreases below the onset of spin-reorientation
transition (80 K), implying that the Bhf above TSR had additional contribution
from Dy-ions due to induced magnetization by the weak ferromagnetic moment of
Fe-sublattice and below TSR, this contribution decreases due to collinear
ordering of Fe-sublattice. These results clearly demonstrate the presence of
magnetic interactions between Dy(4f) and Fe(3d) and their correlation with
ferroelectricity in the weak ferromagnetic state of DyFeO3.Comment: 5 pages, 6 figures, published in EP
Field-induced Polar Order at the N\'eel Temperature of Chromium in Rare-earth Orthochromites: Interplay of Rare-earth and Cr Magnetism
We report field-induced switchable polarization (P = 0.2 ~ 0.8 microC/cm2)
below the N\'eel temperature of chromium (TN Cr) in weakly ferromagnetic
rareearth orthochromites, RCrO3 (R=rareearth) but only when the rareearth ion
is magnetic. Intriguingly, the polarization in ErCrO3 (TC ~ 133 K) disappears
at a spin reorientation (Morin) transition (TSR ~ 22 K) below which the weak
ferromagnetism associated with the Cr sublattice also disappears, demonstrating
the crucial role of weak ferromagnetism in inducing the polar order. Further,
the polarization (P) is strongly influenced by applied magnetic field,
indicating a strong magneto electric effect. We suggest that the polar order
occurs in RCrO3, due to the combined effect of poling field that breaks the
symmetry and the exchange field on R ion from Cr sublattice stabilizes the
polar state. We propose that a similar mechanism could work in the
isostructural rareearth orthoferrites, RFeO3 as well.Comment: 31 pages (Manuscript(6 figures)+supplemental information(8 figures)
Improved Satellite Robustness Through Application of Erosion Resistance and High Emissivity Coatings
Spacecraft can experience charging throughout operation due to high flux of incident electrons (ex. during geomagnetic substorm). As a result, different materials/components may experience a range of potentials which may lead to plasma-induced arcs, damaging spacecraft components. 54% of spacecraft failures are due to enhancement of radiation belt particles and magnetospheric plasma that cause charging/discharing Current space charge mitigation technologies: Metallic coatings System chassis ground leads to as many surfaces as possible Not effective in severe sub-storm conditions and do not enable local application of coatin
Diethyl [(3-cyano-1-phenylsulfonyl-1H-indol-2-yl)methyl]phosphonate
In the title compound, C20H21N2O5PS, the indole ring is essentially planar, with a maximum deviation of −0.0083 (18) Å. The methyl C atom of the methylphosphonate group and the S atom lie 0.104 (2) and −0.2158 (6) Å, respectively, from the indole mean plane. The sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 82.30 (8)°. The ethyl side chains are disordered over two sets of sites, with occupancy factors of 0.737 (5)/0.263 (5) and 0.529 (11)/0.471 (11). In the crystal, molecules are linked into centrosymmetric dimers via C—H⋯O hydrogen bonds, resulting in an R
2
2(18) graph-set motif. The crystal structure is further stabilized by C—H⋯π interactions
Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study
A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area
Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study
A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area
Quantum mechanical studies of lincosamides
Lincosamides are a class of antibiotics used both in clinical and veterinary practice for a wide range of pathogens. This group of drugs inhibits the activity of the bacterial ribosome by binding to the 23S RNA of the large ribosomal subunit and blocking protein synthesis. Currently, three X-ray structures of the ribosome in complex with clindamycin are available in the Protein Data Bank, which reveal that there are two distinct conformations of the pyrrolidinyl propyl group of the bound clindamycin. In this work, we used quantum mechanical methods to investigate the probable conformations of clindamycin in order to explain the two binding modes in the ribosomal 23S RNA. We studied three lincosamide antibiotics: clindamycin, lincomycin, and pirlimycin at the B3LYP level with the 6-31G** basis set. The focus of our work was to connect the conformational landscape and electron densities of the two clindamycin conformers found experimentally with their physicochemical properties. For both functional conformers, we applied natural bond orbital (NBO) analysis and the atoms in molecules (AIM) theory, and calculated the NMR parameters. Based on the results obtained, we were able to show that the structure with the intramolecular hydrogen bond C=O…H–O is the most stable conformer of clindamycin. The charge transfer between the pyrrolidine-derivative ring and the six-atom sugar (methylthiolincosamide), which are linked via an amide bond, was found to be the dominant factor influencing the high stability of this conformer
Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study
The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains
A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero.
OBJECTIVES: This systematic review was undertaken to define the diagnostic performance of in utero MR (iuMR) imaging when attempting to confirm, exclude or provide additional information compared with the information provided by prenatal ultrasound scans (USS) when there is a suspicion of foetal brain abnormality. METHODS: Electronic databases were searched as well as relevant journals and conference proceedings. Reference lists of applicable studies were also explored. Data extraction was conducted by two reviewers independently to identify relevant studies for inclusion in the review. Inclusion criteria were original research that reported the findings of prenatal USS and iuMR imaging and findings in terms of accuracy as judged by an outcome reference diagnosis for foetal brain abnormalities. RESULTS: 34 studies met the inclusion criteria which allowed diagnostic accuracy to be calculated in 959 cases, all of which had an outcome reference diagnosis determined by postnatal imaging, surgery or autopsy. iuMR imaging gave the correct diagnosis in 91 % which was an increase of 16 % above that achieved by USS alone. CONCLUSION: iuMR imaging makes a significant contribution to the diagnosis of foetal brain abnormalities, increasing the diagnostic accuracy achievable by USS alone. KEY POINTS: • Ultrasound is the primary modality for monitoring foetal brain development during pregnancy • iuMRI used together with ultrasound is more accurate for detecting foetal brain abnormalities • iuMR imaging is most helpful for detecting midline brain abnormalities • The moderate heterogeneity of reviewed studies may compromise findings
- …