49 research outputs found

    Injectable pH and Thermo-Responsive Hydrogel Scaffold with Enhanced Osteogenic Differentiation of Preosteoblasts for Bone Regeneration

    Get PDF
    Bone fractures are common in the geriatric population and pose a great economic burden worldwide. While traditional methods for repairing bone defects have primarily been autografts, there are several drawbacks limiting its use. Bone graft substitutes have been used as alternative strategies to improve bone healing. However, there remain several impediments to achieving the desired healing outcomes. Injectable hydrogels have become attractive scaffold materials for bone regeneration, given their high performance in filling irregularly sized bone defects and their ability to encapsulate cells and bioactive molecules and mimic the native ECM of bone. We investigated the use of an injectable chitosan-based hydrogel scaffold to promote the differentiation of preosteoblasts in vitro. The hydrogels were characterized by evaluating cell homogeneity, cell viability, rheological and mechanical properties, and differentiation ability of preosteoblasts in hydrogel scaffolds. Cell-laden hydrogel scaffolds exhibited shear thinning behavior and the ability to maintain shape fidelity after injection. The CNC-CS hydrogels exhibited higher mechanical strength and significantly upregulated the osteogenic activity and differentiation of preosteoblasts, as shown by ALP activity assays and histological analysis of hydrogel scaffolds. These results suggest that this injectable hydrogel is suitable for cell survival, can promote osteogenic differentiation of preosteoblasts, and structurally support new bone growth

    Cilia Proteins are Biomarkers of Altered Flow in the Vasculature

    Get PDF
    Cilia, microtubule-based organelles that project from the apical luminal surface of endothelial cells (ECs), are widely regarded as low-flow sensors. Previous reports suggest that upon high shear stress, cilia on the EC surface are lost, and more recent evidence suggests that deciliation—the physical removal of cilia from the cell surface—is a predominant mechanism for cilia loss in mammalian cells. Thus, we hypothesized that EC deciliation facilitated by changes in shear stress would manifest in increased abundance of cilia-related proteins in circulation. To test this hypothesis, we performed shear stress experiments that mimicked flow conditions from low to high shear stress in human primary cells and a zebrafish model system. In the primary cells, we showed that upon shear stress induction, indeed, ciliary fragments were observed in the effluent in vitro, and effluents contained ciliary proteins normally expressed in both endothelial and epithelial cells. In zebrafish, upon shear stress induction, fewer cilia-expressing ECs were observed. To test the translational relevance of these findings, we investigated our hypothesis using patient blood samples from sickle cell disease and found that plasma levels of ciliary proteins were elevated compared with healthy controls. Further, sickled red blood cells demonstrated high levels of ciliary protein (ARL13b) on their surface after adhesion to brain ECs. Brain ECs postinteraction with sickle RBCs showed high reactive oxygen species (ROS) levels. Attenuating ROS levels in brain ECs decreased cilia protein levels on RBCs and rescued ciliary protein levels in brain ECs. Collectively, these data suggest that cilia and ciliary proteins in circulation are detectable under various altered-flow conditions, which could serve as a surrogate biomarker of the damaged endothelium

    Dose-Ranging Plasma and Genital Tissue Pharmacokinetics and Biodegradation of Ultra-Long-Acting Cabotegravir In Situ Forming Implant

    Get PDF
    HIV continues to affect millions of men and women worldwide. The development of long-acting injectables for HIV prevention can overcome adherence challenges with daily oral prevention regimens by reducing dosing frequency and stigma. We previously developed an ultra-long-acting injectable, biodegradable, and removeable in situ forming implant (ISFI) with cabotegravir (CAB) that demonstrated protection after multiple rectal SHIV challenges in female macaques. Here, we sought to further characterize CAB ISFI pharmacokinetics (PK) in mice by assessing the effect of dose and number of injections on CAB PK, time to completion of CAB release and polymer degradation, long-term genital tissue PK, and CAB PK tail after implant removal. CAB concentrations in plasma were above the benchmark for protection for 11–12 months with proportionality between dose and drug exposure. CAB ISFI exhibited high concentrations in vaginal, cervical, and rectal tissues for up to 180 days. Furthermore, depots were easily retrievable up to 180 days post-administration with up to 34% residual CAB and near complete (85%) polymer degradation quantified in depots ex vivo. After depot removal, results demonstrated a median 11-fold decline in CAB plasma concentrations across all doses. Ultimately, this study provided critical PK information for the CAB ISFI formulation that could aid in its future translation to clinical studies

    Effects of Injection Volume and Route of Administration on Dolutegravir In Situ Forming Implant Pharmacokinetics

    Get PDF
    Due to the versatility of the in situ forming implant (ISFI) drug delivery system, it is crucial to understand the effects of formulation parameters for clinical translation. We utilized ultrasound imaging and pharmacokinetics (PK) in mice to understand the impact of administration route, injection volume, and drug loading on ISFI formation, degradation, and drug release in mice. Placebo ISFIs injected subcutaneously (SQ) with smaller volumes (40 μL) exhibited complete degradation within 30–45 days, compared to larger volumes (80 μL), which completely degraded within 45–60 days. However, all dolutegravir (DTG)-loaded ISFIs along the range of injection volumes tested (20–80 μL) were present at 90 days post-injection, suggesting that DTG can prolong ISFI degradation. Ultrasound imaging showed that intramuscular (IM) ISFIs flattened rapidly post administration compared to SQ, which coincides with the earlier Tmax for drug-loaded IM ISFIs. All mice exhibited DTG plasma concentrations above four times the protein-adjusted 90% inhibitory concentration (PA-IC90) throughout the entire 90 days of the study. ISFI release kinetics best fit to zero order or diffusion-controlled models. When total administered dose was held constant, there was no statistical difference in drug exposure regardless of the route of administration or number of injections

    Efficacy and safety of mycophenolate mofetil and tacrolimus as second-line therapy for patients with autoimmune hepatitis

    Get PDF
    Background: Predniso(lo)ne, alone or in combination with azathioprine, is the standard of care (SOC) therapy for autoimmune hepatitis (AIH). However, the SOC therapy is poorly tolerated or does not control disease activity in up to 20% of patients. We assessed the efficacy of mycophenolate mofetil (MMF) and tacrolimus as second-line therapy for patients with AIH. Patients and methods: We performed a retrospective study of data (from 19 centres in Europe, the United States, Canada, and China) from 201 patients with AIH who received second-line therapy (121 received MMF and 80 received tacrolimus), for a median of 62 months (range, 6–190 months). Patients were categorized according to their response to SOC. Patients in group 1 (n=108) had a complete response to the SOC, but were switched to second line therapy due to side effects of predniso(lo)ne or azathioprine, whereas patients in group 2 (n=93) had not responded to SOC. Results: There was no significant difference in the proportion of patients with a complete response to MMF (69.4%) vs tacrolimus (72.5%) (P=.639). In group 1, MMF and tacrolimus maintained a biochemical remission in 91.9% and 94.1% of patients, respectively (P=.682). Significantly more group 2 patients given tacrolimus compared to MMF had a complete response (56.5 % vs. 34%, P=.029) There were similar proportions of liver-related deaths or liver transplantation among patients given MMF (13.2%) vs tacrolimus (10.3%) (log-rank, P=.472). Ten patients receiving MMF (8.3%) and 10 patients receiving tacrolimus (12.5%) developed side effects that required therapy withdrawal. Conclusions: Long-term therapy with MMF or tacrolimus was generally well tolerated by patients with AIH. The agents were equally effective in previous complete responders who did not tolerate SOC therapy. Tacrolimus led to a complete response in a greater proportion of previous non-responder patients compared to MMF

    Cilia proteins are biomarkers of altered flow in the vasculature

    Get PDF
    Cilia, microtubule-based organelles that project from the apical luminal surface of endothelial cells (ECs), are widely regarded as low-flow sensors. Previous reports suggest that upon high shear stress, cilia on the EC surface are lost, and more recent evidence suggests that deciliation- the physical removal of cilia from the cell surface-is a predominant mechanism for cilia loss in mammalian cells. Thus, we hypothesized that EC deciliation facilitated by changes in shear stress would manifest in increased abundance of cilia-related proteins in circulation. To test this hypothesis, we performed shear stress experiments that mimicked flow conditions from low to high shear stress in human primary cells and a zebrafish model system. In the primary cells, we showed that upon shear stress induction, indeed, ciliary fragments were observed in the effluent in vitro, and effluents contained ciliary proteins normally expressed in both endothelial and epithelial cells. In zebrafish, upon shear stress induction, fewer cilia-expressing ECs were observed. To test the translational relevance of these findings, we investigated our hypothesis using patient blood samples from sickle cell disease and found that plasma levels of ciliary proteins were elevated compared with healthy controls. Further, sickled red blood cells demonstrated high levels of ciliary protein (ARL13b) on their surface after adhesion to brain ECs. Brain ECs postinteraction with sickle RBCs showed high reactive oxygen species (ROS) levels. Attenuating ROS levels in brain ECs decreased cilia protein levels on RBCs and rescued ciliary protein levels in brain ECs. Collectively, these data suggest that cilia and ciliary proteins in circulation are detectable under various altered-flow conditions, which could serve as a surrogate biomarker of the damaged endothelium.This work was funded by Qatar National Research Fund, National Priority Research Program (NPRP 10-0123-170222 to HCY). ADS is supported by funds from the Department of Pediatrics, Herma Heart Institute, the National Center for Research Resources, and the National Center for Advancing Translational Sciences, NIH (UL1TR001436)

    Specific Binding and Mineralization of Calcified Surfaces by Small Peptides

    Get PDF
    Several small (<25aa) peptides have been designed based on the sequence of the dentin phosphoprotein, one of the major noncollagenous proteins thought to be involved in the mineralization of the dentin extracellular matrix during tooth development. These peptides, consisting of multiple repeats of the tripeptide aspartate-serine-serine (DSS), bind with high affinity to calcium phosphate compounds and, when immobilized, can recruit calcium phosphate to peptide-derivatized polystyrene beads or to demineralized human dentin surfaces. The affinity of binding to hydroxyapatite surfaces increases with the number of (DSS)n repeats, and though similar repeated sequences—(NTT)n, (DTT)n, (ETT)n, (NSS)n, (ESS)n, (DAA)n, (ASS)n, and (NAA)n—also showed HA binding activity, it was generally not at the same level as the natural sequence. Binding of the (DSS)n peptides to sectioned human teeth was shown to be tissue-specific, with high levels of binding to the mantle dentin, lower levels of binding to the circumpulpal dentin, and little or no binding to healthy enamel. Phosphorylation of the serines of these peptides was found to affect the avidity, but not the affinity, of binding. The potential utility of these peptides in the detection of carious lesions, the delivery of therapeutic compounds to mineralized tissues, and the modulation of remineralization is discussed

    Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients

    Get PDF
    The incidence of oral squamous cell carcinoma remains high. Oral and oro-pharyngeal carcinomas are the sixth most common cancer in the world. Several clinicopathological parameters have been implicated in prognosis, recurrence and survival, following oral squamous cell carcinoma. In this retrospective analysis, clinicopathological parameters of 115 T1/T2 OSCC were studied and compared to recurrence and death from tumour-related causes. The study protocol was approved by the Joint UCL/UCLH committees of the ethics for human research. The patients' data was entered onto proformas, which were validated and checked by interval sampling. The fields included a range of clinical, operative and histopathological variables related to the status of the surgical margins. Data collection also included recurrence, cause of death, date of death and last clinic review. Causes of death were collated in 4 categories (1) death from locoregional spread, (2) death from distant metastasis, (3) death from bronchopulmonary pneumonia, and (4) death from any non-tumour event that lead to cardiorespiratory failure. The patients' population comprised 65 males and 50 females. Their mean age at the 1 diagnosis of OSCC was 61.7 years. Two-thirds of the patients were Caucasians. Primary sites were mainly identified in the tongue, floor of mouth (FOM), buccal mucosa and alveolus. Most of the identified OSCCs were low-risk (T1N0 and T2N0). All patients underwent primary resection neck dissection and reconstruction when necessary. Twenty-two patients needed adjuvant radiotherapy. Pathological analysis revealed that half of the patients had moderately differentiated OSCC. pTNM slightly differed from the cTNM and showed that 70.4% of the patients had low-risk OSCC. Tumour clearance was ultimately achieved in 107 patients. Follow-up resulted in a 3-year survival of 74.8% and a 5-year survival of 72.2%. Recurrence was identified in 23 males and 20 females. The mean age of 1 diagnosis of the recurrence group was 59.53 years. Most common oral sites included the lateral border of tongue and floor of mouth. Recurrence was associated with clinical N-stage disease. The surgical margins in this group was evaluated and found that 17 had non-cohesive invasion, 30 had dysplasia at margin, 21 had vascular invasion, 9 had nerve invasion and 3 had bony invasion. Severe dysplasia was present in 37 patients. Tumour clearance was achieved in only 8 patients. The mean depth of tumour invasion in the recurrence group was 7.6 mm. An interesting finding was that 5/11 patients who died of distant metastasis had their primary disease in the tongue. Nodal disease comparison showed that 8/10 patients who died of locoregional metastasis and 8/11 patients who died from distant metastasis had clinical nodal involvement. Comparing this to pathological nodal disease (pTNM) showed that 10/10 patients and 10/11 patients who died from locoregional and distant metastasis, respectively, had nodal disease. All patients who died from locoregional and distant metastasis were shown to have recurrence after the primary tumour resection. Squamous cell carcinoma of the oral cavity has a poor overall prognosis with a high tendency to recur at the primary site and extend to involve the cervical lymph nodes. Several clinicopathological parameters can be employed to assess outcome, recurrence and overall survival. © 2010 Jerjes et al; licensee BioMed Central Ltd

    Omega 3 Supplementation Decrease A Blood Cholestrol Level in Trained Women

    Full text link
    Background : Trained woean who experiencing menstrual disoders are found with high blood cholesterol level. This situation is contrary to who don't experience menstrual disorder. Mentrual disorder condition has a low estrogen level. The low estrogen level is associated with endothelial disfunction which causes blood cholesterol increase. The benefit of omega 3 supplementation have been clinically proven to prevent atherosclerosis, decrease blood cholesterol levels, and playong an important role in modulating inflamation. Omega 3 supplementation is expected to decrease blood cholesterol levels in trained women. Method: This research is using field experimental with case control method. The samples are 30 trained womens contained by 15 are controlled and 15 are given treatment. The sampling technique is randomized allocation. The independent variabel is omega 3 300mg supplementation and the dependent variabel is blood cholesterol levels. Data are analized using parametric statistic paired T-test. Result: The bivariate analysis showed there is a meaningful difference on blood cholesterol levels in the treatment group p=0,0027 and no change in control group p=0,191 during treatment for 8 weeks. Conclusion: Omega 3 supplementation decrease a blood cholesterol levels in trained women

    Injectable pH Thermo-Responsive Hydrogel Scaffold for Tumoricidal Neural Stem Cell Therapy for Glioblastoma Multiforme

    No full text
    Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults and despite recent advances in treatment modalities, GBM remains incurable. Injectable hydrogel scaffolds are a versatile delivery system that can improve delivery of drug and cell therapeutics for GBM. In this report, we investigated an injectable nanocellulose/chitosan-based hydrogel scaffold for neural stem cell encapsulation and delivery. Hydrogels were prepared using thermogelling beta-glycerophosphate (BGP) and hydroxyethyl cellulose (HEC), chitosan (CS), and cellulose nanocrystals (CNCs). We evaluated the impact of neural stem cells on hydrogel gelation kinetics, microstructures, and degradation. Furthermore, we investigated the biomaterial effects on cell viability and functionality. We demonstrated that the incorporation of cells at densities of 1, 5 and 10 million does not significantly impact rheological and physical properties CS scaffolds. However, addition of CNCs significantly prolonged hydrogel degradation when cells were seeded at 5 and 10 million per 1 mL hydrogel. In vitro cell studies demonstrated high cell viability, release of TRAIL at therapeutic concentrations, and effective tumor cell killing within 72 h. The ability of these hydrogel scaffolds to support stem cell encapsulation and viability and maintain stem cell functionality makes them an attractive cell delivery system for local treatment of post-surgical cancers
    corecore