878 research outputs found

    Nitric oxide synthase inhibition decreases tolerance to hyperoxia in newborn rats

    Get PDF
    We evaluated the effects of sustained perinatal inhibition of NO synthase (NOS) on hyperoxia induced lung injury in newborn rats. NG-nitro-Larginine-methyl-ester (L-NAME) or untreated water was administered to pregnant rats for the final 7 days of gestation and during lactation; followed by postnatal exposure to hyperoxia (>95% O2) or room air. The survival rate of L-NAME treated pups when placed in > 95% O2 at birth was significantly lower than controls from day 4 (L-NAME, 87%; control pups, 100%, p < 0.05) to 14 (L-NAME, 0%; control pups, 53%, p < 0.05). Foetal pulmonary artery vasoconstriction was induced by L-NAME with a decrease in internal diameter from 0.88 ± 0.03 mm to 0.64 ± 0.01 mm in control vs. L-NAME groups (p < 0.05), respectively. We conclude that perinatal NOS inhibition results in pulmonary artery vasoconstriction and a decreased tolerance to hyperoxia induced lung injury in newborn rats

    Molecular Electroporation and the Transduction of Oligoarginines

    Full text link
    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.Comment: 15 pages, 5 figure

    Palaeoclimatic events, dispersal and migratory losses along the Afro-European axis as drivers of biogeographic distribution in Sylvia warblers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Old World warbler genus <it>Sylvia </it>has been used extensively as a model system in a variety of ecological, genetic, and morphological studies. The genus is comprised of about 25 species, and 70% of these species have distributions at or near the Mediterranean Sea. This distribution pattern suggests a possible role for the Messinian Salinity Crisis (from 5.96-5.33 Ma) as a driving force in lineage diversification. Other species distributions suggest that Late Miocene to Pliocene Afro-tropical forest dynamics have also been important in the evolution of <it>Sylvia </it>lineages. Using a molecular phylogenetic hypothesis and other methods, we seek to develop a biogeographic hypothesis for <it>Sylvia </it>and to explicitly assess the roles of these climate-driven events.</p> <p>Results</p> <p>We present the first strongly supported molecular phylogeny for <it>Sylvia</it>. With one exception, species fall into one of three strongly supported clades: one small clade of species distributed mainly in Africa and Europe, one large clade of species distributed mainly in Africa and Asia, and another large clade with primarily a circum-Mediterranean distribution. Asia is reconstructed as the ancestral area for <it>Sylvia</it>. Long-distance migration is reconstructed as the ancestral character state for the genus, and sedentary behavior subsequently evolved seven times.</p> <p>Conclusion</p> <p>Molecular clock calibration suggests that <it>Sylvia </it>arose in the early Miocene and diverged into three main clades by 12.6 Ma. Divergence estimates indicate that the Messinian Salinity Crisis had a minor impact on <it>Sylvia</it>. Instead, over-water dispersals, repeated loss of long-distance migration, and palaeo-climatic events in Africa played primary roles in <it>Sylvia </it>divergence and distribution.</p

    Theory of d-density wave viewed from a vertex model and its implications

    Full text link
    The thermal disordering of the dd-density wave, proposed to be the origin of the pseudogap state of high temperature superconductors, is suggested to be the same as that of the statistical mechanical model known as the 6-vertex model. The low temperature phase consists of a staggered order parameter of circulating currents, while the disordered high temperature phase is a power-law phase with no order. A special feature of this transition is the complete lack of an observable specific heat anomaly at the transition. There is also a transition at a even higher temperature at which the magnitude of the order parameter collapses. These results are due to classical thermal fluctuations and are entirely unrelated to a quantum critical point in the ground state. The quantum mechanical ground state can be explored by incorporating processes that causes transitions between the vertices, allowing us to discuss quantum phase transition in the ground state as well as the effect of quantum criticality at a finite temperature as distinct from the power-law fluctuations in the classical regime. A generalization of the model on a triangular lattice that leads to a 20-vertex model may shed light on the Wigner glass picture of the metal-insulator transition in two-dimensional electron gas. The power-law ordered high temperature phase may be generic to a class of constrained systems and its relation to recent advances in the quantum dimer models is noted.Comment: RevTex4, 10 pages, 11 figure

    Expedition 306 summary

    No full text
    The overall aim of the North Atlantic paleoceanography study of Integrated Ocean Drilling Program Expedition 306 is to place late Neogene–Quaternary climate proxies in the North Atlantic into a chronology based on a combination of geomagnetic paleointensity, stable isotope, and detrital layer stratigraphies, and in so doing generate integrated North Atlantic millennial-scale stratigraphies for the last few million years. To reach this aim, complete sedimentary sections were drilled by multiple advanced piston coring directly south of the central Atlantic “ice-rafted debris belt” and on the southern Gardar Drift. In addition to the North Atlantic paleoceanography study, a borehole observatory was successfully installed in a new ~180 m deep hole close to Ocean Drilling Program Site 642, consisting of a circulation obviation retrofit kit to seal the borehole from the overlying ocean, a thermistor string, and a data logger to document and monitor bottom water temperature variations through time

    Inhaled carbon monoxide protects time-dependently from loss of hypoxic pulmonary vasoconstriction in endotoxemic mice

    Get PDF
    Background: Inhaled carbon monoxide (CO) appears to have beneficial effects on endotoxemia-induced impairment of hypoxic pulmonary vasoconstriction (HPV). This study aims to specify correct timing of CO application, it’s biochemical mechanisms and effects on inflammatory reactions. Methods: Mice (C57BL/6; n = 86) received lipopolysaccharide (LPS, 30 mg/kg) intraperitoneally and subsequently breathed 50 ppm CO continuously during defined intervals of 3, 6, 12 or 18 h. Two control groups received saline intraperitoneally and additionally either air or CO, and one control group received LPS but breathed air only. In an isolated lung perfusion model vasoconstrictor response to hypoxia (FiO2 = 0.01) was quantified by measurements of pulmonary artery pressure. Pulmonary capillary pressure was estimated by double occlusion technique. Further, inflammatory plasma cytokines and lung tissue mRNA of nitric-oxide-synthase-2 (NOS-2) and heme oxygenase-1 (HO-1) were measured. Results: HPV was impaired after LPS-challenge (p < 0.01). CO exposure restored HPV-responsiveness if administered continuously for full 18 h, for the first 6 h and if given in the interval between the 3rd and 6th hour after LPS-challenge (p < 0.05). Preserved HPV was attributable to recovered arterial resistance and associated with significant reduction in NOS-2 mRNA when compared to controls (p < 0.05). We found no effects on inflammatory plasma cytokines. Conclusion: Low-dose CO prevented LPS-induced impairment of HPV in a time-dependent manner, associated with a decreased NOS-2 expression

    Magnetic Penetration Depth in Unconventional Superconductors

    Full text link
    This topical review summarizes various features of magnetic penetration depth in unconventional superconductors. Precise measurements of the penetration depth as a function of temperature, magnetic field and crystal orientation can provide detailed information about the pairing state. Examples are given of unconventional pairing in hole- and electron-doped cuprates, organic and heavy fermion superconductors. The ability to apply an external magnetic field adds a new dimension to penetration depth measurements. We discuss how field dependent measurements can be used to study surface Andreev bound states, nonlinear Meissner effects, magnetic impurities, magnetic ordering, proximity effects and vortex motion. We also discuss how penetration depth measurements as a function of orientation can be used to explore superconductors with more than one gap and with anisotropic gaps. Details relevant to the analysis of penetration depth data in anisotropic samples are also discussed.Comment: topical review, 57 pages, 219 reference

    (Micro)evolutionary changes and the evolutionary potential of bird migration

    No full text
    Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here

    Non-Lorentzian single-molecule line shape: Pseudolocal phonons and coherence transfer

    Get PDF
    The excitation line shape of a single terrylene molecule in a naphthalene crystal has been investigated. In addition to the conventional Lorentzian, it consists of a dispersive component in the core region and a sideband. This is due to a pseudolocal phonon caused by the substitution of a host molecule with the chromophore. When the pseudolocal phonon is excited, the resonance frequency of the chromophore slightly changes, resulting in the appearance of a second, quasiresonant transition. Coherence transfer between these two optical transitions causes the deviation from the purely Lorentzian line shape
    corecore