696 research outputs found
A note on light velocity anisotropy
It is proved that in experiments on or near the Earth, no anisotropy in the
one-way velocity of light may be detected. The very accurate experiments which
have been performed to detect such an effect are to be considered significant
tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation
Experiments of in vitro formation of blood vessels show that cells randomly
spread on a gel matrix autonomously organize to form a connected vascular
network. We propose a simple model which reproduces many features of the
biological system. We show that both the model and the real system exhibit a
fractal behavior at small scales, due to the process of migration and dynamical
aggregation, followed at large scale by a random percolation behavior due to
the coalescence of aggregates. The results are in good agreement with the
analysis performed on the experimental data.Comment: 4 pages, 11 eps figure
Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications
Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis
Ferromagnetism and ferroelectricity in epitaxial BiMnO3 ultra-thin films
We studied the ferroelectric and ferromagnetic properties of compressive strained and unstrained BiMnO3 thin films grown by rf-magnetron sputtering. BiMnO3 samples exhibit a two-dimensional cube-on-cube growth mode and a pseudo-cubic structure up to a thickness of 15 nm and of 25 nm when deposited on (001) SrTiO3 and (110) DyScO3, respectively. Above these thicknesses, we observe a switching to a three-dimensional island growth mode and a simultaneous structural change to a (00l) oriented monoclinic unit cell. While ferromagnetism is observed below a T-C approximate to 100K for all samples, signatures of room temperature ferroelectricity were found only in the pseudo-cubic ultra-thin films, indicating a correlation between electronic and structural orders
Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates
We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2−xFe1+yMo1−yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.
INT
When the optimal is not the best: parameter estimation in complex biological models
Background: The vast computational resources that became available during the
past decade enabled the development and simulation of increasingly complex
mathematical models of cancer growth. These models typically involve many free
parameters whose determination is a substantial obstacle to model development.
Direct measurement of biochemical parameters in vivo is often difficult and
sometimes impracticable, while fitting them under data-poor conditions may
result in biologically implausible values.
Results: We discuss different methodological approaches to estimate
parameters in complex biological models. We make use of the high computational
power of the Blue Gene technology to perform an extensive study of the
parameter space in a model of avascular tumor growth. We explicitly show that
the landscape of the cost function used to optimize the model to the data has a
very rugged surface in parameter space. This cost function has many local
minima with unrealistic solutions, including the global minimum corresponding
to the best fit.
Conclusions: The case studied in this paper shows one example in which model
parameters that optimally fit the data are not necessarily the best ones from a
biological point of view. To avoid force-fitting a model to a dataset, we
propose that the best model parameters should be found by choosing, among
suboptimal parameters, those that match criteria other than the ones used to
fit the model. We also conclude that the model, data and optimization approach
form a new complex system, and point to the need of a theory that addresses
this problem more generally
Homeostatic competition drives tumor growth and metastasis nucleation
We propose a mechanism for tumor growth emphasizing the role of homeostatic
regulation and tissue stability. We show that competition between surface and
bulk effects leads to the existence of a critical size that must be overcome by
metastases to reach macroscopic sizes. This property can qualitatively explain
the observed size distributions of metastases, while size-independent growth
rates cannot account for clinical and experimental data. In addition, it
potentially explains the observed preferential growth of metastases on tissue
surfaces and membranes such as the pleural and peritoneal layers, suggests a
mechanism underlying the seed and soil hypothesis introduced by Stephen Paget
in 1889 and yields realistic values for metastatic inefficiency. We propose a
number of key experiments to test these concepts. The homeostatic pressure as
introduced in this work could constitute a quantitative, experimentally
accessible measure for the metastatic potential of early malignant growths.Comment: 13 pages, 11 figures, to be published in the HFSP Journa
Semi-Analytic Stellar Structure in Scalar-Tensor Gravity
Precision tests of gravity can be used to constrain the properties of
hypothetical very light scalar fields, but these tests depend crucially on how
macroscopic astrophysical objects couple to the new scalar field. We develop
quasi-analytic methods for solving the equations of stellar structure using
scalar-tensor gravity, with the goal of seeing how stellar properties depend on
assumptions made about the scalar coupling at a microscopic level. We
illustrate these methods by applying them to Brans-Dicke scalars, and their
generalization in which the scalar-matter coupling is a weak function of the
scalar field. The four observable parameters that characterize the fields
external to a spherically symmetric star (the stellar radius, R, mass, M,
scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject
to two relations because of the matching to the interior solution, generalizing
the usual mass-radius, M(R), relation of General Relativity. We identify how
these relations depend on the microscopic scalar couplings, agreeing with
earlier workers when comparisons are possible. Explicit analytical solutions
are obtained for the instructive toy model of constant-density stars, whose
properties we compare to more realistic equations of state for neutron star
models.Comment: 39 pages, 9 figure
- …
