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Abstract—This paper deals with the mathematical modeling of the coupled flow/deformation
problem characterizing the industrial production of a composite material by injection moulding.
The role of inertia, typically non–negligible during a short early time, is studied in terms of models
of reduced complexity. Using the theory of characteristics and some considerations on the energy
of the system we are able to estimate the time needed by the system to dissipate the oscillatory
motion due to abrupt initial conditions.
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1. Introduction

The mathematical modeling of the infiltration process of a fluid in a porous matrix subjected
to a pressure gap, that can yield a non negligible deformation of the solid skeleton, is of interest
in several industrial processes and environmental applications. Among others, we mention injection
molding and soil consolidation. Historically the research on deformable porous media was first
developed in the branch of ground soil mechanics, soil consolidations under loading, ground water
hydrology, petroleum engineering and extraction,[1], [2]. We refer to the fundamental papers by Biot
[3], [4], [5], [6]. A possible modelling framework to address this problem is the mixture theory: from
a macroscopic point of view one writes balance equations for the solid matrix and the infiltrating
resin that at every point of the mixture are co-present, in a ratio defined by the volume fraction [7].

A simplifying assumption usually taken into account in the mathematical modeling of the
infiltration process is to neglect ”ab initio” the inertia of both the components. However, for injection
molding processes, inertial terms affect the system in the early times, giving rise to elastic oscillations
of the solid preform that rapidly decay [8].

In the present paper, under some simplifying assumptions, analytical results are obtained which
can give quantitative information on inertial effects at early times of the infiltration process. The
focus is on the motion of the free boundary of the solid matrix: the period and amplitude of the
oscillations, and their decay rate. As a byproduct, the traveling waves in the dry (not yet infiltrated)
region are also studied. All these features of the process are related to the parameters of the system:
the mechanical properties of the preform (the stress strain relation, the permeability of the matrix),
the infiltrating resin and the applied pressure gap to prime the inflow process.

The paper is organized as follows:
– Section 2 is devoted to the mathematical modeling of the phenomenon, including the proper

prescription of the boundary conditions;
– Section 3 gives the analytical solution of the equations, for a simple choice of the constitutive

law of the stress tensor of the preform;
– in Section 4 the analytical results previously obtained are compared with numerical simulations;
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– the last section gives a critical analysis of the results, suggesting directions worth of further
studies.

2. The mathematical model

A possible way to address the modeling of the infiltration of a fluid into a porous medium is to
adopt the mixture theory, or, more precisely, the porous media theory. The basic postulate of the
theory is that the mechanical behavior of the mixture can be predicted by solving balance equations
that pertain to the single components in the mixture. One can therefore state a system of balance
equations for mass, momentum and possibly energy of each constituent. The assumptions that apply
the general theory to the present work are isotropy of the solid preform, incompressibility of the fluid
component, applicability of the Darcy’s law, isothermal conditions, validity of the same stress–strain
relationship in both the infiltrated region, and in the dry one.

The mathematical problem we consider intrinsically involves a moving boundary: the porous
matrix (the ”sponge”) deforms as far as the infiltration process advances, so that its boundary
moves; the liquid infiltrates wetting the sponge and therefore the infiltration front moves with the
velocity of the fluid. Air is completely neglected (for the case of a solid–liquid–air mixture, see [9])
Figure 2.1 shows a sketchy representation of the problem under consideration.

Figure 2.1. Representation of the one–dimensional infiltration problem. The infiltrated (wet) region

is bounded by the two moving boundaries of the problem. The right border of the preform, instead,

is fixed by a web, which allows only the liquid to go through.

The following equations drive the dynamics of the two components of the mixture in the Eulerian
formulation, when neglecting the inertia of the fluid:

∂φs

∂t
+ div(φsvs) = 0 ,

∂φf

∂t
+ div(φfvf ) = 0 ,

ρsφs
dvs

d t
− div Ts = −p̂f ,

− div Tf = p̂f ,

(2.1)

where ρs is the true mass density of the solid matrix, p̂f is the momentum exchange between
components due to mutual interactions, and vα, Tα, φα are the velocity, the partial stress, the
volume fractions, for the α-component, respectively. We suppose that the unsaturated region is very
small when compared with the saturated one and therefore we neglect it assuming that a sharp
interface separates the wet and dry preform. The saturation condition reads φs + φf = 1 and from
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equations (2.1.I) and (2.1.II) we obtain that the composite velocity vc = φsvs + φfvf is divergence
free. The following constitutive assumptions are considered

p̂f = P grad(φf )− µφ2
fK

−1(vf − vs) ,

Tf = −φf P ,

Ts = −φs P + T ,

(2.2)

where P is the water pore pressure, µ the viscosity of the fluid, and K and T are the permeability
tensor and the excess stress of the matrix, respectively. Using such assumptions the balance equations
for the momentum of the components rewrite

ρsφs
dvs

d t
= −φs gradP + div T + µφ2

fK
−1(vf − vs) ,

0 = −φf grad P − µφ2
fK

−1(vf − vs) .
(2.3)

Equation (2.3II) is usually referred as Darcy’s equations.

2.1 One–dimensional infiltration and boundary conditions

The balance equations can be conveniently rewritten in Lagrangian coordinates attached to the solid
component [10], [11]. In the following we restrict to one–directional infiltration. In this context the
composite velocity is constant, and a simple equation for the motion of the infiltration front can be
recovered, [12].

It is convenient to introduce the dependent variable void ratio e(X, t) defined as e := 1−φs

φs
. The

infiltration front δ(t) is a material boundary for the fluid phase and therefore travels with its own
velocity vf . In the Lagrangian formulation

dδ

dt
= − K(er + 1)2

µ e(e + 1)
∂P

∂X

∣∣∣∣
X=δ

, (2.4)

which can be obtained writing Darcy’s law (2.3.II), in coordinates fixed on the solid matrix at rest.
The following system of equations holds in the infiltrated (or wet) part of the preform, neglecting

the inertia of the fluid




∂e

∂t
− (er + 1)

∂v

∂X
= 0,

ρs

er + 1
∂v

∂t
− ∂T

∂X
= − ∂P

∂X
,

X ∈ [0, δ(t)) (2.5)

where v = v(t, X) is the velocity of the solid preform, T = T (e) is the stress in the preform.
In the dry region, we have the following model





∂e

∂t
− (er + 1)

∂v

∂X
= 0,

ρs

er + 1
∂v

∂t
− ∂T

∂X
= 0.

X ∈ [δ(t), L] (2.6)

Note that we use the same functional form of the excess stress tensor T (e) for both the wet and
dry regions, thus assume that the preform doesn’t change its mechanical properties after being
infiltrated.

A characteristic analysis of the hyperbolic systems of equations (2.5) and (2.6) (see next Sec-
tion) demonstrates that one boundary condition has to supplemented at the solid borders and two
continuity conditions (for flux of mass and momentum) at the infiltration front.
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We suppose the preform to be relaxed at the initial time and the solid velocity to be zero.
The position of the right border of the preform is fixed and therefore a Dirichlet boundary condition
of null displacement applies. The left one moves during the process and the condition to be imposed
is the continuity between the normal stress of mixture and the applied load. This is not a trivial
issue as the stress in the mixture involves both the pressure of the mixture P and the excess stress
T . A detailed discussion of this delicate issue is beyond the scope of this paper, we just refer the
interested reader to the relevant literature ([13], [14]). In the present work we assume that value
of P matches on the boundary the the external fluid pressure [12] so that the excess stress is null
therein. This means that the left border presents a void ratio equal to the relaxed value. Again we
assume that the pressure to be continuous across the infiltration front and neglecting the dynamics
of the air in the dry region (which means P = const = 0 in the dry zone), see [15], we have

[[ρsφsv δ̇]]− [[T ]] = 0 , (2.7)

where[[a]] = a(δ+) − a(δ−). The first difference in the equation (2.7) is very small in the problem
under consideration, so that the continuity of the excess stress across the infiltration front will be
assumed. We shall consider again this point in the final section discussing the numerical results.

The above considerations lead to the following set of initial and boundary conditions





e(t = 0, X) = er ∀X ∈ [0, L]
v(t = 0, X) = 0 ∀X ∈ (0, L]
e(t, X = 0) = er ∀t
v(t, X = L) = 0 ∀t

e(t, X = δ−) = e(t, X = δ+) ∀t
v(t, X = δ−) = v(t, X = δ+) ∀t

(2.8)

where L is the initial length of the preform.

3. Approximate analysis of a pressure driven process

As argued in the literature (also based on numerical simulations, [8]), the effect of the inertia in
the applications is important only for a very short time interval (if compared to the overall infiltration
time), during which the infiltrated region is very small (when compared to the total sponge lenght).

Neglecting inertia at all, [15], the preform is suddenly compressed at a constant void ratio. If
the inertia is not neglected, the preform compresses at a finite (even if very large) velocity. The
sudden initial compression determines the formation of traveling waves in the dry region, and the
sponge starts oscillating.

The system of equations (2.6) does not account for any dissipation mechanisms in the dry
sponge: dissipation occurs in the wet region only, due to the interactions between the infiltrating
liquid and the sponge. Hence we expect the oscillations to decay in time.

In what follows we show that, under some simplifying assumptions, it is possible to capture
some features of this complex phenomenon. We argue that the motion of the left solid border is
essentially driven by two mechanisms:

– the interaction of the wet region with the elastic waves traveling in the dry region;
– the infiltration process.

Such phenomena will be studied separately, substituting the equations for the wet region with a
very simple model. In Section 3.1 we study the onset of the shocks and their influence on the motion
of the left border, under the simplifying assumption that the wet region has a constant thickness
δ: the wet region is modeled as a point mass whose dynamics is determined by the stress tensor at
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the infiltration front and the applied pressure. In Section 3.2 the wet region is considered in more
detail: the enlargement of the wet region increases the mass ρsδ of the material point considered
previously, yielding the decay of the oscillations; furthermore dissipation occurs in the wet region,
due to the relative velocity between the two phases.

3.2 Velocity of the left border of the preform during the initial compression

Assume in the following δ ¿ L. Integrating in space equation (2.2.II) in the correponding
domain we obtain

ρs

er + 1

∫ δ

0

∂v

∂t
dX = T (ec(t)) + ∆P , (3.1)

where ∆P is the pressure drop externally applied at the whole system and it is put into evidence
that the value of the void ratio at the infiltration front ec is a function of time. Assuming ∂v

∂t to be
constant in the small wet region we can write

ρs δ
∂v

∂t

∣∣∣∣
X=δ

= (er + 1) (T (ec(t)) + ∆P ) . (3.2)

Eq.(3.2) gives a simplified model of the system: the wet region is studied as a point mass (with
mass ρsδ). Such a point mass is affected by two types of actions: a constant pressure gap and the
response of the deformed matrix.

Now we estimate the response of the dry preform. Due to the compression, the absolute value
of the excess stress in the dry region increases. A shock wave is generated which goes up and down
through the dry zone giving rise to oscillations.

We can write the system of equations in the dry region (2.6) in the following matrix form

∂u
∂t

+ A
∂u
∂X

= 0 ,

where

u =
(

e

v

)
, A =

(
0 er + 1

er+1
ρs

T ′(e) 0

)
. (3.3)

Introducing the Riemann invariants, [16], the system (2.6) rewrites




∂z1

∂t
− λ(u)

∂z1

∂X
= 0

∂z2

∂t
+ λ(u)

∂z2

∂X
= 0

(3.4)

where z1 and z2 are the Riemann invariants, ±λ are the corresponding eigenvalues of the matrix A:

z1 = (er + 1)

(
v +

∫ e

0

√
T ′(ξ)
ρs

dξ

)
,

z2 = (er + 1)

(
v −

∫ e

0

√
T ′(ξ)
ρs

dξ

)
,

λ = (er + 1)

√
T ′(e)
ρs

.

(3.5)

The first invariant z1 is constant along the characteristics entering the (x, t) plane across the
line t = 0. Remembering the initial conditions e(t = 0, X) = er and v(t = 0, X) = 0, we have

v(t < τ, X = δ) =
∫ er

e

√
T ′(ξ)
ρs

dξ , (3.6)
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where τ is the time taken by the characteristic line passing through (t = 0, X = L) to reach the
left border. From the previous equation we have a relation between the velocity and the void ratio
on the left border. Such a relation can be inverted and substituted in Eq. (3.2) for the velocity. In
this way, we obtain an equation for the velocity of the left solid border, which can be solved with
the initial condition v(t = 0, X = δ) = 0.

In the injection molding process, the first compression is very rapid compared with the period
of the oscillations; the void ratio reaches a value very close to ec1 = T−1(−∆P ), so that the r.h.s. of
Eq. (3.2) is almost equal to zero and the velocity approximates a constant value v. Hence, the void
ratio along the dry preform can be approximated by a step function with jump ec1 − er. The shock
propagates to the right side of the preform. Imposing there the boundary condition of null velocity,
and remembering that along the characteristics propagating to the right z2 is constant (see figure
3.1), we obtain the value of the void ratio at the right boundary in the following implicit form

∫ ec1

ec2

√
T ′(ξ)
ρs

dξ = v . (3.7)

The previous relation gives the value of the void ratio ec2 which travels back to the left border. Such
a value is lower than ec1, so that T (ec2) < −∆P and hence the left border is forced to invert its
motion after the reflection of the second shock.

Iterating such a procedure we can study the oscillations of the border.

3.2.1 The case of linear stress

The simplest application can be studied when the stress depends linearly on the void ratio

T (e) = Σ(e− er) , (3.8)

where Σ is a positive constant. The system of equations in the dry region reduces to




∂e

∂t
− (er + 1)

∂v

∂X
= 0

ρs

er + 1
∂v

∂t
− Σ

∂e

∂X
= 0 .

(3.9)

The Riemann invariants and the modulus of the eigenvalues now simply read

z1 = (er + 1)

(
v +

√
Σ
ρs

e

)
,

z2 = (er + 1)

(
v −

√
Σ
ρs

e

)
,

λ = (er + 1)

√
Σ
ρs

.

(3.10)

The problem now is linear and the speed of propagation of the discontinuities is equal to the eigen-
values. Following the same procedure of the previous section, when the infiltration starts we have

e(t, X = δ) = er −
√

ρs

Σ
v , (3.11)

and substituting in the equation for the wet region we obtain

δρs
∂v

∂t
= (er + 1)(∆P −

√
Σρsv) , (3.12)
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whose solution is
v(t) =

∆P√
Σρs

(1− e
− er+1

δ

√
Σ
ρs

t) . (3.13)

For typical values of the process, the velocity reaches quickly the asymptotic value vmax;0 = ∆P√
Σρs

.

In fact we can say that the relaxation time is of the order of τr = δ
er+1

√
ρs

Σ , whereas the time of
propagation along the dry region is τ = L−δ

λ
∼= L

λ = L
er+1

√
ρs

Σ , so that we have τr

τ = δ
L . Hence, the

velocity of the sponge is a step function traveling towards the right border at a speed λ. From the
previous expression for the void ratio at X = 0, substituting v ∼= vmax;0 we have

e(t, X = δ) ∼= er − ∆P

Σ
. (3.14)

At time τ ∼= L
λ , the traveling wave reaches the right border of the solid preform, where the solid

velocity is zero. Imposing the Riemann invariant z2 to be constant along the characteristics entering
the domain in X = δ, we obtain the value of the void ratio at X = L

e(t > τ, X = L) = er − 2

√
Σ
ρs

v(t− τ, X = 0) ∼= er − 2

√
Σ
ρs

vmax;0 = er − 2
∆P

Σ
, (3.15)

where we considered the void ratio as a step function, neglecting again the relaxation time related
to the velocity. Imposing z1 to be constant along the characteristics coming back to the left solid
border, we obtain

e1(t, X = δ) ∼= er − 2
∆P

Σ
−

√
ρs

Σ
v1 (3.16)

where the subscript 1 designates the quantities related to the coming back of the first traveling wave.
Substituting the previous expressions, we obtain the following equation for v1





δρs
∂v1

∂t
= (er + 1)(−∆P −

√
Σρsv1)

v1(t = 2τ) =
∆P

Σ

(3.17)

whose solution is

v1(t′) = − ∆P√
Σρs

(1− 2 e
− er+1

δ

√
Σ
ρs

t′) , t′ = t− 2τ > 0 . (3.18)

We see again that the velocity reaches quickly (after a very short relaxation time, with the same
relaxation time constant) a constant asymptotic value, which is vmin;1 = − ∆P√

Σρs

.

Going on studying the waves traveling along the dry sponge, we see that the velocity of the left
border is almost equal to a periodic step function with period 4τ = 4L

λ and values vmax;i = ∆P√
Σρs

for i even, and vmin;i = − ∆P√
Σρs

for i odd.

Integrating over time such an approximation of the velocity, we gain the following approximated
expression for the motion of the left solid border

s(t) =





∆P√
Σρs

t if t ∈ [
4iτ, 2(2i + 1)τ

)

∆P

Σ
2L

er + 1
− ∆P√

Σρs
t if t ∈ [

2(2i + 1)τ, 4(i + 1)τ
) (3.19)
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where i = 0, 1, 2, .... It is a triangular wave with the period and the amplitude given below

T = 4τ =
4 L

er + 1

√
ρs

Σ
,

smax =
2 L

er + 1
∆P

Σ
.

(3.20)

Also the void ratio, as a function of X, is almost equal to a step function: the value at the infiltration
front is always equal (except for a relaxation time) to er − ∆P

Σ and the other constant (asymptotic)
values traveling up and down the sponge are er − 2∆P

Σ and er (the latter is obtained after the
reflection on the right border when the velocity of the left border is negative; it is simple to verify,
imposing z2 to be constant along the characteristics emanating from the left border).

To compare this approximate solution, obtained substituting the asymptotic values of the ve-
locity vmax;i or vmin;i, with the solution of the problem considering the time evolution of the velocity
of the left border, we report in figure 3.1 the result of a simple numerical routine which solves the
equations discussed above without the approximation on the velocity. The corresponding values of
the parameters will be presented in the following section. We can note that the relaxation time is
very small.
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Displacement - m

0.01 0.02 0.03 0.04
Time - s

-5

5

10

Velocity -
m
����
s

Figure 3.1. Velocity and displacement of the solid border.

3.3 Decay of the oscillations

The analysis of the section above accounts only for the very early time, in which the thickness
of the wet region δ does not vary appreciably. Furthermore, in the analysis presented in so far, there
is no discussion on dissipation phenomena. The thickness of the infiltrated region is supposed to
be constant in the time interval at hand, so that the ”force applied on the wet region” (which is
modeled as a point mass) produces periodically the same effects. As the process of infiltration goes
on, the wet region becomes larger and its thickness influences the oscillations of the left border of
the preform. In what follows we remove the above assumption to explain how the motion of the
infiltration front can contribute to the decay of the amplitude of the oscillations.
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In the following three sections we’ll describe the evolution of the infiltration front, the effects
on the motion of the sponge and the energy dissipation in the wet region.

3.3.1 Evolution of the infiltration front

To solve the equation (2.3) for the motion of the infiltration front δ, we need to relate the
pressure gradient to δ. We can suppose that the pressure in the infiltration region varies almost
linearly and that its slope at the infiltration front could be approximate by the slope of the straight
line taking the boundary values of the pressure on x = 0 and x = δ. Hence, we recover the following
equation

dδ

dt
∼= K(er + 1)2

µ ec(ec + 1)
∆P

δ
= R[ec]

1
δ

. (3.21)

Considering the case of linear stress tensor, the void ratio at the infiltration front (neglecting the
relaxation times) assume the value:

ec
∼= er − ∆P

Σ
. (3.22)

We can than consider R[ec] as a constant. This allows to solve analytically the equation for the
infiltration front, obtaining

δ(t) ∼=
√

2 R[ec]
√

t . (3.23)

Remark. We can note that, according to Eq.(3.23), the infiltration boundary moves at an infinite

velocity at t = 0. This pradox is related to the assumption of neglecting the inertia of the fluid,

which is not negligible for small t. The complete conservation equation for the momentum of the

fluid is given by the following equation which should substitute Eq. (2.4)

ε
dvl

dt
+

dδ

dt
= − K(er + 1)2

µ e(e + 1)
∂P

∂X

∣∣∣∣
X=δ

, (2.4bis)

where ε = (1+e)2

e2
Kρl

µ . Neglecting, during the initial infiltration, the solid velocity with respect to

the fluid one, Eq. (2.7bis) can be written as a second order equation for δ. For physical values of

the parameters, ε ' 10−3, whereas K(er+1)2

µ e(e+1) ∆P ' 1. Thus Eq. (2.4bis) is a singular perturbation

equation. The momentum term allows to satisfy one boundary condition more than Eq (3.21), which

is that the velocity (not only the position) of the infiltration boundary vanishes at t=0. The effect

of the momentum of the fluid vanishes rapidly, converging to the asymptotic solution (3.23).

3.3.2 Movement of the left border in the case of linear stress

In the previous sections we always assumed the thickness of the infiltrated region δ to be small.
As the infiltration process proceeds, we need to relax such an assumption. As a consequence some
of the approximations considered above are not valid if the thickness of the infiltration region is not
negligible: the velocity and the void ratio cannot be approximated by step functions. The relaxation
times increase as the infiltration process proceeds. The effect is a deformation from a step function
of the velocity of the left solid border as a function of time: such a deformation lasts for a time of
the order of two times the relaxation time. As such a velocity is related to the formation of traveling
waves in the dry region, its deformation produces a corresponding changing of the shape of such
waves.

In what follows, we provide an approximate study of this phenomenon, giving a qualitative
discussion on the shape of the traveling waves in the dry region and a quantitative description of
the velocity of the solid at the infiltration front. The better approximation of the velocity presented
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allows to obtain a more precise description of the oscillations, yielding to a first justification of their
decay.

Effects of the increasing of the wet region on the velocity of the left solid border

As we obtained in the previous section (3.1.1) on the application to the case of linear stress
tensor, supposing the thickness of the infiltrated region δ to be constant, the velocity of the left
border of the sponge (with the exception of the first compression starting from v(t = 0, X = 0) = 0)
is given by

v(t) = ± ∆P√
Σρs

(1− 2 e
− er+1

δ

√
Σ
ρs

t) , (3.24)

where the plus or minus sign refers to the reflection of an odd or even traveling wave, respectively,
and the time t = 0 corresponds to the incidence on the left solid border of the wave considered.
We can suppose δ to be almost constant during the small time in which the velocity relaxed to
the asymptotic value ± ∆P√

Σρs

. This means that we can consider the previous expression as a good

approximation for the velocity of the border, even if the infiltration is dependent on time.
Now, in order to study the decay of the amplitude of the oscillations, we consider δ to assume

different (constant) values in each oscillation. For our simplified model, this means that the mass of
the infiltrated region increases in time.

Integrating in time the expression of the velocity of the left border of the sponge, we obtain the
following expression for the displacement of the border after the reflection of a traveling wave

s(t) = ± ∆P√
Σρs

t∓ 2 δ

er + 1
∆P

Σ
(1− e

− er+1
δ

√
Σ
ρs

t) + s0 , (3.25)

where s0 is the position of the border when the traveling wave arrives.
We can give an estimate of s0 as follows: as the infiltrated region is large δ, the dry region is

long L− δ. Therefore the traveling wave reaches the infiltration front before the time estimated by
the calculations yielding the triangular wave (3.19). We can estimate the correction in the decay of
the oscillation due to the smaller extension of the dry region as

∆s1 =
δ

Σ
∆P

er + 1
, (3.26)

which is the distance covered by the oscillating border in the time taken by a traveling wave to cover
δ.

Remark. The mass of the infiltrated region changes during an oscillation. Consider the time when

the velocity of the solid at the infiltration front is ∆P√
Σρs

, the value for which the stress tensor T (ec)

at the infiltration front is equal to the applied jump of pressure ∆P . As the force applied to the

point mass modeling the wet region vanishes, its momentum ρsδ v must be conserved. Hence, we

could expect that the velocity will reduce, as the mass ρsδ increases and the applied forces vanish.

But, we should note that, as the velocity reduces, the void ratio at the infiltration front increases,

reducing the stress, yielding a positive force ∆P + T (ec) which increases the velocity. This means

that a negative feedback stabilizes the velocity of the solid at the infiltration front yielding a positive

constant value till the wave traveling the dry region comes back.

Now we can come back to equation (3.25), in which an estimate of s0 can be given. The reflection
of the wave forces the left border to invert its motion, but, due to the inertia of the infiltrated region,

the inversion is not sharp: for very small t, e
− er+1

δ

√
Σ
ρs

t ∼= 1− er+1
δ

√
Σ
ρs

t in equation (3.25), yielding
that the left border continues to compress the sponge initially. From equation (3.24) we deduce that
compression goes on till the exponential term is equal to 1

2 (which means its exponent is almost
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equal to 0.7) and then the inversion of the motion starts. At such a time the oscillation reaches its
maximum absolute value:

sM
∼= |s0|+ 0.3

δ

er + 1
∆P

Σ
. (3.27)

This means that the amplitude of the oscillations reduces to 0.7 δ
er+1

∆P
Σ at each reflection.

Deformation of the traveling waves

From the expression (3.16) and (3.18) we have

e1 = er − 2∆P

Σ
−

√
ρs

Σ
v1 = er − 2∆P

Σ
+

∆P

Σ
(1− 2 e

− er+1
δ

√
Σ
ρs

t) , (3.28)

where we measured the time from the impinging of the traveling wave. We can note that for very
small values of t we have an elongation; when the exponent of the exponential function in equation
(3.28) is equal to ln 1

2
∼= 0.7, the void ratio is equal to er − 2∆P

Σ , i.e. the constant value of the
traveling wave before the reflection; when it is larger than 3 the void ratio is almost equal to er− ∆P

Σ

(with a mistake less than 10%), i.e. the constant value of the traveling wave after the reflection.

Furthermore, we note that the exponent in the exponential is given by t times er+1
δ

√
Σ
ρs

, which
is the inverse of the time taken by a wave to cover a length equal to δ. This means that, referring
to that noted above, the deformation of the traveling wave has a length of 3 δ and presents a first
sharp elongation vanishing at a distance 0.7 δ.

We can give a physical interpretation to the deformation of the shape of the wave reflected,
focusing on our simplified model; let’s consider the reflection of the first wave which impinges on the
point mass which models the wet region (see figure 4.1): as it has an inertia, it doesn’t change the
velocity sharply, and for the first time it continues to present a positive velocity; as a consequence
the solid matrix compresses giving rise to the elongation described above; as the point mass inverts
its motion the matrix starts to relax.

Let’s consider again the first reflection of a traveling wave. We can approximate its exponential
expression with a step function, placing the jump at the average value of the exponential func-
tion, which means at a distance 2δ from the beginning of the elongation (remembering the relation∫∞
0

x e−xdx = 2). This can be interpreted as a delay time for the reflection of the traveling wave
(approximated as a step function) equal to the time needed for a wave to go up and down the wet
region.

The deformation of a wave traveling the dry region after n oscillations is the sum of the de-
formations gained in the previous 2 n reflections at the left border. We deduce that when large
infiltration is considered and a great number of reflections occurred the void ratio in the dry region
is far from the step function approximating it in the previous calculations. A better approximation
can be given by two constant values connected by a straight line which gives a transition between
such values in the region in which the deformation from a step function is great.

When the transition region has a length bigger than two times that of the dry region, the
velocity of the left border does not reach any more its maximum value v0

∼= ∆P√
Σρs

, since the

effect of a subsequent wave affects the left border before the energy of the previous one is completely
transferred to the point mass modeling the wet region. This means that the velocity presents smooth
oscillations with smaller maximum value. As the maximum value of velocity reduces, also does the
maximum of the void ratio in the dry region. As a consequence a quick decay of the oscillations of
the left border occurs.

Remark. As the traveling waves determine the solid velocity at the infiltration front we can give

a qualitative description of the velocity of the solid matrix at the infiltration front during the first

oscillations. As mentioned above, the void ratio after the first reflection is an exponential, presenting
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an elongation with respect to the step function and then a decay. The elongation is the first part of

the wave coming back to impinge on the infiltration front. As a consequence, the velocity increases

a bit its absolute value when the wave reaches it. After this short period (of the order of 0.7 δ
λ ), the

velocity increases smoothly, and a new oscillation starts. In figure 4.4 we show such an interesting

elongation of the function velocity vs time, which appears before the inversion of the motion of the

wet region, from the reflection of the second wave (since the first one is a perfect step function).

3.3.3 Energy associated with the oscillations

Modeling the wet region as a point mass means neglecting the dynamics inside it. Indeed, we
note that so far equation (2.5.I) was not considered at all in the previous discussion and that we
used equation (3.2), which is an approximation of (2.5.II).

Therefore, phenomena like the relaxation of the matrix in the wet region or the oscillations
occurring inside it have been neglected. This means that we are neglecting phenomena connected to
the storing and restoring of mechanical energy in the wet region, supposing that the whole energy
is the kinetic energy of the point mass modeling it.

In what follows we focus on the energy balance associated with the process under consideration.

Energy stored in the dry region

In terms of energy, we can say that the main features of the system can be caught considering
the transformation of the energy stored in the dry region into kinetic energy of the wet and dry
regions. Let’s then evaluate the energy stored in the matrix which allows the oscillations to occur.
We can say that it is equal to the potential energy associated to the compressed dry region (which
means a constant void ratio in the dry region equal to e′c = er − 2∆P

Σ ) minus the amount of energy
stored by the matrix at equilibrium, when the oscillations disappear (constant void ratio in the dry
region equal to ec = er − ∆P

Σ ). Hence we have the following potential energy

∫ L

δ

Σ(er − e′c) d X −
∫ L

δ

Σ(er − ec) dX ∼= ∆P (L− δ) , (3.29)

where unit cross section area is assumed.
As the infiltration front advances, the energy stored in the dry region decreases and we see from

equation (3.29) that it is zero when the infiltration is fulfilled. In what follows we’ll discuss another
contribution to the decay of the oscillations, given by the dissipation of kinetic energy in the wet
region. To explain it we need to consider the full model of the wet region, remembering the physical
meaning of each term.

Dissipation of energy in the wet region

In the wet region dissipation occurs due to the relative motion of the fluid phase and the solid
one. Indeed, the thermal admissibility of the constitutive relations for the interaction terms forces
the choice of the positive sign of the permeability and viscosity in Darcy’s law and we’ll see in the
following that a measure of the dissipation of kinetic energy is related to the relative velocities of
the two phases and to their interactions, modeled by Darcy’s law.

Let’s consider the problem written in the Eulerian formulation in the general three dimensional
case (the system of equations (2.3)). Now we can multiply the first equation (2.3.I) by the solid
velocity vs, the equation (2.3.II) by the fluid velocity vf , and sum to obtain

φsρs
d

d t

v2
s

2
= −µφ2

f

K
(vf − vs)2 − vc · gradP + vs · div T , (3.30)
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where vc is the composite velocity. Let’s now integrate in a portion B(t) of the continuum we are
studying

∫

B(t)

φsρs
d

d t

v2

2
d V =

d

d t

∫

B(t)

φsρs
v2

2
d V =

∫

B(t)

(
−µφ2

f

K
(vf − vs)2 − vc · grad P + vs · div T

)
d V ,

(3.31)
where we denoted by d V the infinitesimal volume element. Integrating by parts in the r.h.s. we
obtain

d

d t

∫

B(t)

φsρs
v2

2
d V +

∫

B(t)

tr(TDs) d V = −
∫

B(t)

µφ2
f

K
(vf − vs)2 d V −

∫

∂B(t)

(
Pvc + Tvs

)
· n dS ,

(3.32)
where Ds = gradvs is the stretching tensor of the solid matrix and tr(TDs) is the stress power of
the matrix. Hence the l.h.s. is the total energy of the wet portion B(t) of the mixture considered.
The r.h.s. is given by two contributions: a surface and a volume term. The surface term is related
to the energy supplied by the external world; the volume one is due to the local interactions between
the two phases, and accounts for a dissipation.

Let’s now turn to the one dimensional problem we are interested in. Let’s consider B(t) to
designate the Eulerian counterpart of the wet region in a certain instant of time t (which means
[0, δ(t)]). As B(t) is constituted by material points, we have to consider only the points reached by
the fluid at time t, not those reached afterwards, as the infiltration goes on. This means that we
must subtract a convection term in the l.h.s. of (3.30)

d

d t

∫ δ

0

ρs

1 + er

v2

2
dX +

∫ δ

0

T D d X =

=
ρs

1 + er

v2

2

∣∣∣∣
δ

dδ

d t
−

[
uinP + T v

]δ

0
−

∫ δ

0

µe2

K(1 + e)(1 + er)
(vf − v)2 dX ,

(3.33)

where D = ∂v
∂X is the one dimensional Lagrangian counterpart of Ds.

The first and second term in the r.h.s. of equation (3.33) are surface contributions which
correspond to the energy associated to the infiltration and to the oscillatory motion of the wet
region (discussed in the previous section). The third term is a volume contribution representing the
dissipation of energy in the wet region. Let’s study such a term: substituting Darcy’s law

Vf =
1 + e

1 + er
(vf − v) = −K(er + 1)2

µ e(e + 1)
∂P

∂X
, (3.34)

where Vf is the Lagrangian velocity of the fluid with respect to the solid, we can express the relative
velocity in terms of the pressure gradient and obtain the following expression for the dissipation of
energy E(t) in the wet region due to the relative motion of the two phases

E(t) =
∫ t

0

∫ δ

0

µe2

K(1 + e)(1 + er)
(vf − v)2 dX d t =

K

µ

∫ t

0

∫ δ

0

(er + 1)5

(e + 1)5

(
∂P

∂X

)2

dX d t . (3.35)

If we approximate the pressure gradient in the wet region as a constant equal to ∆P
δ and the void

ratio as equal to the average value e = er − ∆P
2Σ we obtain1

E(t) ∼= K

µ

∫ t

0

(er + 1)5

(e + 1)5
∆P 2

δ
d t ∼=

√
2 K

µ

(er + 1)5

(e + 1)5
∆P 2

√
R[ec]

√
t . (3.36)
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Now that we know how much of the energy is dissipated due to the interaction between the
phases during infiltration, we can compare it with the energy stored in the matrix which allows the
oscillations to occur. The time needed to dissipate all the energy which forces the solid matrix to
oscillate can be obtained imposing such energies to be equal

E(t∗) ∼=
√

2 K

µ

(er + 1)5

(e + 1)5
∆P 2

√
R[ec]

√
t∗ = ∆P (L−

√
2R[ec] t∗) . (3.37)

From the equation (3.37) we have the following expression of the decay time

t∗ = β
µL2

2 K ∆P
, (3.38)

where

β =
(er+1)2

ec(ec+1)(
(er+1)5

(e+1)5 + (er+1)2

ec(ec+1)

)2 . (3.39)

If we want to evaluate the time in which the energy dissipated is of a certain amount, for example
we want to evaluate the time for which the system has dissipated α times the initial energy (with
α < 1), we have the same expression for t∗ but with β substituted by

β1 =
(er+1)2

ec(ec+1)(
1
α

(er+1)5

(e+1)5 + (er+1)2

ec(ec+1)

)2 . (3.40)

4. Comparison with numerical simulations

The full problem illustrated in Section 2 can be solved numerically in the Eulerian formulation
by a Godunov-type scheme, [8], [17], using a moving grid which can be possibly remeshed. All the
parameters used in the simulation of the model are specified in Table 4.1.

Variable Value MeasureUnit
ρs 2530 Kg/m3

Σ 1.6 · 106 J/m2

K 2.53 · 10−9 m2

er 1
∆P 5 · 105 Pa
µ 0.135 Pa · s
L 0.3 m

Table 4.1 : Numerical values of the physical parameters.

Such parameters are approximations of the experimental data reported in the following, which refer
to the infiltration of a thermosetting resin in a network of glass fibers, neglecting the curing, [18]:

– the viscosity corresponds to the expression for the viscosity of the resin, [19], [20]

µ (Θ, δc) = µ̄ exp
(

Eµ

R Θ

)
(4.1)

(1) We remember that the left border of the solid matrix is relaxed and the infiltration front
presents a void ratio equal to er − ∆P

Σ except for the transition periods in which a wave traveling in
the dry region is reflected.
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(where R is the gas constant, Eµ = 18000 J/mole is the activation energy) evaluated for a
temperature of 350 k

– the stress tensor is the secant between er and ew
c for the stress-strain relation extrapolated by

the data, reported in [21]
T ′ = β(eγφ − eγφr ) , (4.2)

where β = 0.09Pa and γ = 26.4
– about the permeability, we assumed it to depend explicitly only on the porosity and, referring

to [22], we use the following relation

K(φs) = K0e
α(φ1−φs) . (4.3)

evaluated at the mean value between er and ew
c

Figure 4.1. Traveling waves.

In figure 4.1 we can see the void ratio as a function of X at four different instant of time: the
wave travels up and down the dry region two times, and the graphs are related to the void ratio after
the first compression and the following three reflections. The void ratio predicted for the reflections
are

e0 = er = 1, e1 = er − ∆P

Σ
∼= 0.69 e2 = er − 2

∆P

Σ
∼= 0.38, e3 = er . (4.4)

In figure 4.1 we can also note the deformation of the second traveling wave with respect to the
first one: the wave traveling for the first time is a perfect step function, the second one presents an
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Figure 4.2. First oscillations of the left border.

elongation (.7Xi long, i.e. of the order of 0.03 m at the first reflection) and an exponential decay
(with characteristic length of the order of Xi), as described in the previous section.

In figure 4.2 are reported the first oscillations of the left border of the matrix, which are to be
compared with the amplitude and the frequency obtained analytically. The period of the oscillations
theoretically predicted is

T =
4L

er + 1

√
ρs

Σ
∼= 0.024 s , (4.5)

and the amplitude is

smax =
2 L

er + 1
∆P

Σ
∼= 0.093 m. (4.6)

In figure 4.3 is represented the position of the infiltration front, and the comparison with the
analytical approximated result, in the Eulerian framework. We note that the numerical simulations
start with a finite infiltrated region of 1 mm.

Figure 4.4 shows the velocity of the solid at the infiltration front. As noted in the previous
section, from the second reflection of a traveling wave an elongation appears, due to the inertia
of the wet region which produces a further compression of the preform before the inversion of the
motion of the point mass modelling the wet region.

We can now discuss the approximation introduced in equation (2.4) at the light of the numerical
simulations. The velocity of the solid at the infiltration front is of the order of 6 m

s ; the infiltration
velocity, except for the very early time, is less then 10 m

s . This means that the jump of momentum
across the infiltration front is at most 10% of the jump of the stress. This is largely an over estimation,
as confirmed by the numerical simulations, which do not predict any jump across the infiltration
front.

In figure 4.5 is represented the decay of the oscillations. The motion is evaluated integrating
the velocity of the solid at the infiltration front (all our results concern such a velocity). It is worth

16



Figure 4.3. Position of the infiltration front: comparison between the full model (black line) and the

reduced one (grey line).

Figure 4.4. Velocity of the solid at the infiltration front as a function of time.

noticing that it doesn’t correspond to the motion of a material point; if we want to study the motion
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Figure 4.5. Decay of the oscillations: the two functions delimiting the oscillations refer to the

predicted decay.

Figure 4.6. Infiltration process for a long time of infiltration: the figure on the left shows the velocity

of the solid at the infiltration front as a function of time; the figure on the right shows the position

of the infiltration front in the Eulerian framework.

of the left solid border we have to take into account also its relaxation, which, referring to [12], can
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be evaluated by

vlsb =
K

µ

∂T ′w
∂φ

∂φ

∂x

∣∣∣∣
x=xi

− K

µ

∂T ′w
∂φ

∂φ

∂x

∣∣∣∣
x=xe

, (4.7)

where xi and xe are the Eulerian positions of the infiltration front and the left solid border, respec-
tively.
In figure 4.5 we also show the functions 0.7 Xi

er+1
∆P
Σ and smax − 0.7 Xi

er+1
∆P
Σ which model the decay

due to the increase of the mass of the point mass modelling the wet region (see Section (3.2.2)), but
neglecting the energy dissipation in the wet region. We can notice that the approximation of the
decay is good only for the first oscillations.

Finally, in figure 4.6 are presented two simulations which allow to determine the time in which
the oscillations of the wet region disappear: the first graph shows the velocity of the solid at the
infiltration front as a function of time for a long process time; the second graph presents the position
of the infiltration front in the Eulerian framework. We can note that the oscillations in the velocity
disappear in 0.8 seconds, but the energy associated to such oscillations is strongly reduced before
such a time. The time for the full dissipation of the energy predicted by the discussion of Section
(3.2.3) is

t∗ = β
µL2

2 K ∆P
= 0.68 s. (4.8)

The time needed to dissipate the 75% of the energy is

t∗ = β1
µ L2

2 K ∆P
= 0.56 s. (4.9)

5. Final Remarks

A formulation of the infiltration of an incompressible liquid through a solid porous medium
has been introduced, in the framework of mixture theory. The model has been applied to typical
conditions characterizing industrial processes of injection molding through an elastic preform, when
a constant pressure on the injected fluid is applied.

By some simplifying assumptions, an analytical discussion is given for the case of linear stress
tensor, focusing on the role of inertial terms. Some qualitative features of the phenomenon are
studied: the decay of such oscillations in the early stage of the infiltration process in terms of the
parameters entering the system (porosity, stress, the sponge solid phase, applied pressure gap);
estimates for the displacement of the infiltration front are derived. These estimates fit well with the
results obtained by numerical simulation of the complete model.
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