153 research outputs found

    Flow through the Strait of Dover

    No full text

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Future observational and modelling needs identified on the basis of the existing shelf data

    Get PDF
    NOWESP has compiled a vast quantity of existing data from the North-West European Shelf. Such a focused task is without precedence. It is now highly recommended that one, or a few national and international data centres or agencies should be chosen and properly supported by the EU, where all available observational data, including the NOWESP data, are collected, stored, regularly updated by the providers of the data, and made available to the researchers. International agreement must be reached on the quality control procedures and quality standards for data to be stored in these data bases. Proper arrangements should be made to preserve the economic value of the data for their "owners" without compromising use of the data by researchers or duplicating data collecting efforts. The continental shelf data needed are concentration fields of temperature, salinity, nutrients, suspended matter and chlorophyll, which can be called "climatological" fields. For this purpose at least one monthly survey on the whole European shelf is needed at least during five years, with a proper spatial resolution e.g. 1 degree by 1 degree, and at least in those areas where climatological data are now totally lacking. From the modelling point of view an alternative would be the availability of data from sufficiently representative fixed stations on the shelf, with weekly sampling for several years

    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    Get PDF
    © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources

    Resonances in an evolving hole in the swash zone

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society of Civil Engineers for personal use, not for redistribution. The definitive version was published in Journal of Waterway, Port, Coastal, and Ocean Engineering 138 (2012): 299–302, doi:10.1061/(ASCE)WW.1943-5460.0000136.Water oscillations observed in a 10-m diameter, 2-m deep hole excavated on the foreshore just above the low-tide line on an ocean beach are consistent with theory. When swashes first filled the initially circular hole on the rising tide, the dominant mode observed in the cross-shore velocity was consistent with a zero-order Bessel function solution (sloshing back and forth). As the tide rose and swash transported sediment, the hole diameter decreased, the water depth inside the hole remained approximately constant, and the frequency of the sloshing mode increased according to theory. About an hour after the swashes first reached the hole, it had evolved from a closed circle to a semi-circle, open to the ocean. When the hole was nearly semi-circular, the observed cross-shore velocity had two spectral peaks, one associated with the sloshing of a closed circle, the other associated with a quarter-wavelength mode in an open semi-circle, both consistent with theory. As the hole evolved further toward a fully semi-circular shape, the circular sloshing mode decreased, while the quarter-wavelength mode became dominant.The Office of Naval Research, a National Security Science and Engineering Faculty Fellowship, a National Science Foundation Career award, and a National Defense Science and Engineering Graduate Fellowship provided support

    Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea

    Get PDF
    Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea

    Optimising tidal range power plant operation

    Get PDF
    Tidal range power plants represent an attractive approach for the large-scale generation of electricity from the marine environment. Even though the tides and by extension the available energy resource are predictable, they are also variable in time. This variability poses a challenge regarding the optimal transient control of power plants. We consider simulation methods which include the main modes of operation of tidal power plants, along with algorithms to regulate the timing of these. This paper proposes a framework where simplified power plant operation models are coupled with gradient-based optimisation techniques to determine the optimal control strategy over multiple tidal cycles. The optimisation results inform coastal ocean simulations that include tidal power plants to gauge whether the benefits of an adaptive operation are preserved once their hydrodynamic impacts are also taken into consideration. The combined operation of two prospective tidal lagoon projects within the Bristol Channel and the Severn Estuary is used as an example to demonstrate the potential benefits of an energy maximisation optimisation approach. For the case studies considered, the inclusion of pumping and an adaptive operation is shown to deliver an overall increase in energy output of 20–40% compared to a conventional two-way uniform operation. The findings also demonstrate that smaller schemes stand to gain more from operational optimisation compared to designs of a larger scale
    corecore