981 research outputs found
Children's interactions with interactive toy technology
Abstract Digital toys offer the opportunity to explore software scaffolding through tangible interfaces that are not bound to the desktop computer. This paper describes the empirical work completed by the CACHET (Computers and Children's Electronic Toys) project team investigating young children's use of interactive toy technology. The interactive toys in question are plush and cuddly cartoon characters with embedded sensors that can be squeezed to evoke spoken feedback from the toy. In addition to playing with the toy as it stands, the toy can be linked to a desktop PC with compatible software using a wireless radio connection. Once this connection is made the toy offers hints and tips to the children as they play with the accompanying software games. If the toy is absent, the same hints and tips are available through an on-screen animated icon of the toy's cartoon character. The toys as they stand are not impressive as collaborative learning partners, as their help repertoire is inadequate and even inappropriate. However, the technology has potential: children can master the multiple interfaces of toy and screen and, when the task requires it and the help provided is appropriate, they will both seek and use it. In particular, the cuddly interface experience can offer an advantage and the potential for fun interfaces that might address both the affective and the effective dimensions of learners' interactions
Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment
The normal tissue tolerance levels to fractionated radiotherapy have been appreciated by a century of careful clinical observations and radiobiological studies in animals. During clinical fractionated radiotherapy, these normal tissue tolerance levels are respected, and severe sequelae of radiotherapy are avoided in the majority of patients. Notwithstanding, a minority of patients experience unexpectedly severe normal tissue reactions. The ability to predict which patients might form this minority would be important. We have conducted a study to develop a rapid and reliable diagnostic test to predict excessive normal tissue toxicity (NTT) in radiotherapy patients. A flow cytometric immunocytochemical assay was used to measure DNA damage in peripheral blood lymphocytes (PBL) from cancer patients exposed to 2-Gy gamma radiation. DNA damage and repair was measured by induction of cellular γ-H2AX in unirradiated and exposed cells at specific time points following exposure. In 12 cancer patients that experienced severe atypical NTT following radiotherapy, there was a failure to repair DNA double-strand breaks (DSB) as measured by γ-H2AX induction and persistence. In ten cancer patients that experienced little or no NTT and in seven normal (noncancer controls), efficient repair of DNA DSB was observed in the γ-H2AX assay. We conclude that a flow cytometric assay based on γ-H2AX induction in PBL of radiotherapy patients may represent a robust, rapid and reliable biomarker to predict NTT during radiotherapy. Further research is required with a larger patient cohort to validate this important study
The cleaning of burned and contaminated archaeological maize prior to 87Sr/86Sr analysis
Accurate trace-metal and strontium-isotope analyses of archaeological corn cobs require that metal contaminants be removed prior to chemical analysis. Archaeological cobs are often coated with construction debris, dust, or soilwhich contains mineral particles. In addition, most archaeological cobs are partially or completely burned and the burned parts incorporate mineral debris in their hardened residual structures. Unburned cobs are weak ion exchangers and most metals within a cob are not firmly bound to cob organic matter; therefore, immersing cobs in acids and rinsing them in deionized water to remove mineral contaminants may result in the undesirable loss of metals, including strontium, from the cob.
In this paper we show that some cob metal-pair ratios are not substantially changed when the cob is ‘‘cleaned’’ with deionized water, if the water-cob contact time does not exceed five minutes. Additionally, we introduce a method for eliminating mineral contaminants in both burned and unburned cobs, thus rendering them acceptable for strontium-isotope analysis. However, the decontamination procedure results in the rapid non-stoichiometric leaching of trace metals from the unburned cobs and it is possible that most metals will be extracted from the cobs during the lengthy decontamination process. Trace metals, in particular Al and Ca, should be analyzed in order to determine the presence and level of mineral contamination after cleaning
Children, play and computers in pre-school education
The paper reports a study designed to inform the development of an information and communication technology strategy for the pre-school years of education. The main methods of collecting evidence were observations at seven pre-school settings and interviews with at least two practitioners and a number of children at each site. Practitioners generally referred to children “playing with the computer”. We describe some of the problems to be found in the emphasis on free play in nurseries and play groups when this means children are using computers as complete novices. There were few examples of peer support; adults rarely intervened or offered guidance and the most common form of intervention was reactive supervision. Interaction with a computer was therefore a limited experience for most children, but we provide examples of guided interaction that suggest a way forward for professional development
Exploring the quotidian in young children's lives at home
The challenges of conducting research in the home, especially with preschool children, mean that the role of the home as a site for research is often overlooked by educationalists. Our repeat visits to fourteen families that included a three- or four-year-old child over more than a year as part of our study “Young Children Learning with Toys and Technology at Home” enabled us to develop research relationships that resulted in a 100 percent retention rate. We summarize the ecocultural framework that informed the design of our study and describe two methods for collecting data (“toy tours” and “mobile phone diaries”) that highlight issues relating to the rules of engagement when conducting research that generates insights into children’s everyday lives at home
Constraining properties of the black hole population using LISA
LISA should detect gravitational waves from tens to hundreds of systems
containing black holes with mass in the range from 10 thousand to 10 million
solar masses. Black holes in this mass range are not well constrained by
current electromagnetic observations, so LISA could significantly enhance our
understanding of the astrophysics of such systems. In this paper, we describe a
framework for combining LISA observations to make statements about massive
black hole populations. We summarise the constraints that LISA observations of
extreme-mass-ratio inspirals might be able to place on the mass function of
black holes in the LISA range. We also describe how LISA observations can be
used to choose between different models for the hierarchical growth of
structure in the early Universe. We consider four models that differ in their
prescription for the initial mass distribution of black hole seeds, and in the
efficiency of accretion onto the black holes. We show that with as little as 3
months of LISA data we can clearly distinguish between these models, even under
relatively pessimistic assumptions about the performance of the detector and
our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for
proceedings of 8th LISA Symposium; v2 minor changes for consistency with
accepted versio
- …