1,688 research outputs found

    Estimates of future automated space mission models for use in NASA launch vehicle planning

    Get PDF
    Mission models for 1971 to 1981 for use in NASA launch vehicle plannin

    Alternatively spliced exons of the beta tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon

    Get PDF
    The rat beta-tropomyosin (TM) gene expresses two isoforms via alternative RNA splicing, namely skeletal muscle beta-TM and fibroblast TM-1. The latter is also expressed in smooth muscle where it corresponds to smooth muscle beta-TM. Skeletal muscle beta-TM contains exons 7 and 10, whereas exons 6 and 11 are used in fibroblasts and smooth muscle. In order to study the properties of the alternatively spliced proteins, recombinant TMs derived from bacterial and insect cell expression systems were produced, including the normal beta gene products, fibroblast TM-1 and beta skeletal muscle TM, two carboxy-terminal chimeric TMs, TM-6/10 and TM-7/11, as well as a carboxyl-truncated version of each, TM-6Cla and TM-7Cla. The purified TM isoforms were used in actin filament association studies. The apparent TM association constants (Ka) were taken as the free concentration at half saturation and were found to be 6 microM for beta Sk TM, 8.5 for TM-6/10, 25 microM for TM-1, and 30 microM for TM-7/11 at an F-actin concentration of 42 microM. For the truncated TMs, the values determined were higher still but the binding was not carried out to full saturation. Isoforms were also produced using the baculovirus-insect cell system which produces proteins with an acetylated amino terminus as is normally found in vivo. This modification significantly enhanced the F-actin association of TM-1 but not the beta skeletal TM or the other isoforms. Fibroblast TM-2 or TM-3, both products of the alpha gene, enhanced the affinity of TM-1 for F-actin, demonstrating different isoforms can act cooperatively on binding to actin. This effect was not detected with the other expressed beta gene products. The presence of 83 kDa nonmuscle caldesmon was found to enhance the binding of TM-1 for F-actin. This effect was dependent on the presence of both exons 6 and 11, as caldesmon had little effect on the other beta gene products. Collectively these results demonstrate TMs differ in their affinity for F-actin, which can be altered by other TMs or actin-binding proteins. The beta tropomyosin isoforms were fluorescently-tagged and microinjected into cultured cells to study their in vivo localization where it was found that each of the full-length TMs bound to microfilaments but, at the light microscopy level, the isoforms were not differentially localized in these fibroblasts

    Some Properties of the Computable Cross Norm Criterion for Separability

    Get PDF
    The computable cross norm (CCN) criterion is a new powerful analytical and computable separability criterion for bipartite quantum states, that is also known to systematically detect bound entanglement. In certain aspects this criterion complements the well-known Peres positive partial transpose (PPT) criterion. In the present paper we study important analytical properties of the CCN criterion. We show that in contrast to the PPT criterion it is not sufficient in dimension 2 x 2. In higher dimensions we prove theorems connecting the fidelity of a quantum state with the CCN criterion. We also analyze the behaviour of the CCN criterion under local operations and identify the operations that leave it invariant. It turns out that the CCN criterion is in general not invariant under local operations.Comment: 7 pages; accepted by Physical Review A; error in Appendix B correcte

    Method of convex rigid frames and applications in studies of multipartite quNit pure-states

    Full text link
    In this Letter we suggest a method of convex rigid frames in the studies of the multipartite quNit pure-states. We illustrate what are the convex rigid frames and what is the method of convex rigid frames. As the applications we use this method to solve some basic problems and give some new results (three theorems): The problem of the partial separability of the multipartite quNit pure-states and its geometric explanation; The problem of the classification of the multipartite quNit pure-states, and give a perfect explanation of the local unitary transformations; Thirdly, we discuss the invariants of classes and give a possible physical explanation.Comment: 6 pages, no figur

    Robust control of decoherence in realistic one-qubit quantum gates

    Full text link
    We present an open loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme.Comment: 21 pages, 8 figures, VIth International Conference on Quantum Communication, Measurement and Computing (Boston, 2002

    Probabilistic Quantum Memories

    Get PDF
    Typical address-oriented computer memories cannot recognize incomplete or noisy information. Associative (content-addressable) memories solve this problem but suffer from severe capacity shortages. I propose a model of a quantum memory that solves both problems. The storage capacity is exponential in the number of qbits and thus optimal. The retrieval mechanism for incomplete or noisy inputs is probabilistic, with postselection of the measurement result. The output is determined by a probability distribution on the memory which is peaked around the stored patterns closest in Hamming distance to the input.Comment: Revised version to appear in Phys. Rev. Let

    Academic Pharmacy: Where is Our Influence?

    Get PDF
    Objective. To evaluate the talents of fellows from cohorts 1-10 of the Academic Leadership Fellows Program (ALFP)

    Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core

    Get PDF
    Light absorbing particles (LAPs) include black carbon (BC) and mineral dust and are of interest due to their positive radiative forcing and contribution to albedo reductions and snow and glacier melt. This study documents historic BC and dust deposition as well as their effect on albedo on South Cascade Glacier (SCG) in Washington State (USA) through the analysis of a 158‐m (139.5‐m water equivalent [w.e.]) ice core extracted in 1994 and spanning the period 1840–1991. Peak BC deposition occurred between 1940 and 1960, when median BC concentrations were 16 times higher than background, likely dominated by domestic coal and forest fire emissions. Post 1960 BC concentrations decrease, followed by an increase from 1977 to 1991 due to melt consolidation and higher emissions. Differences between the SCG record and BC emission inventories, as well as ice core records from other regions, highlight regional differences in the timing of anthropogenic and biomass BC emissions. Dust deposition on SCG is dominated by local sources and is variable throughout the record. Albedo reductions from LAP are dominated by dust deposition, except during high BC deposition events from forest fires and during 1940–1960 when BC and dust similarly contribute to albedo reductions. This study furthers understanding of the factors contributing to historical snowmelt and glacier retreat in the Cascades and demonstrates that ice cores retrieved from temperate glaciers have the potential to provide valuable records of LAP deposition

    Geometrical approach to mutually unbiased bases

    Full text link
    We propose a unifying phase-space approach to the construction of mutually unbiased bases for a two-qubit system. It is based on an explicit classification of the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional properties. We also consider the feasible transformations between different kinds of curves and show that they correspond to local rotations around the Bloch-sphere principal axes. We suggest how to generalize the method to systems in dimensions that are powers of a prime.Comment: 10 pages. Some typos in the journal version have been correcte
    corecore