244 research outputs found
Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress
Published: April 14, 2017The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.Craig T. Wallington-Beddoe, Melissa K. Bennett, Kate Vandyke, Lorena Davies, Julia R. Zebol, Paul A.B. Moretti, Melissa R. Pitman, Duncan R. Hewett, Andrew C.W. Zannettino and Stuart M. Pitso
Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1
Resistance to docetaxel is a key problem in current prostate and breast cancer management. We have recently discovered a new molecular mechanism of prostate cancer docetaxel chemoresistance mediated by the mammalian target of rapamycin (mTOR)/sphingosine-kinase-1 (SK1) pathway. Here we investigated the influence of this pathway on vascular endothelial growth factor (VEGF) production and tumour vascularisation in hormone resistant prostate and breast cancer models. Immunofluorescent staining of tumour sections from human oestrogen receptor (ER)-negative breast cancer patients showed a strong correlation between phosphorylated P70S6 kinase (mTOR downstream target), VEGF and SK1 protein expression. In hormone-insensitive prostate (PC3) and breast (MDA-MB-231 and BT-549) cancer cell lines the mTOR inhibitor RAD001 (everolimus) has significantly inhibited SK1 and VEGF expression, while low dose (5 nM) docetaxel had no significant effect. In these cell lines, SK1 overexpression slightly increased the basal levels of VEGF, but did not block the inhibitory effect of RAD001 on VEGF. In a human prostate xenograft model established in nude mice, RAD001 alone or in combination with docetaxel has suppressed tumour growth, VEGF expression and decreased tumour vasculature. Overall, our data demonstrate a new mechanism of an independent regulation of SK1 and VEGF by mTOR in hormone-insensitive prostate and breast cancers
Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue
Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen
Computed tomographic atlas for the new international lymph node map for lung cancer: A radiation oncologist perspective
International audiencePurpose : To develop a reproducible definition for each mediastinal lymph node station based on the new TNM classification for lung cancer. Methods and Materials : This paper proposes an atlas using the new international lymph node map used in the seventh edition of the TNM classification for lung cancer. Four radiation oncologists and 1 diagnostic radiologist were involved in the project to put forward a reproducible radiologic description for the lung lymph node stations.Results : The International Association for the Study of Lung Cancer lymph node definitions for stations 1 to 11 have been described and illustrated on axial computed tomographic scan images using a certified radiotherapy planning system. Conclusions : This atlas will assist both diagnostic radiologists and radiation oncologists in accurately defining the lymph node stations on computed tomographic scan in patients diagnosed with lung cancer
Examining the role of sphingosine kinase-2 in the regulation of endothelial cell barrier integrity
A key mediator of vascular EC barrier integrity, S1P, is derived from phosphorylation of sphingosine by the SK-1 and SK-2. While previous work indicates that SK-1 can regulate EC barrier integrity, whether SK-2 has a similar role remains to be determined.A cell impedance assay was used to assess human umbilical vein EC and bone marrow EC barrier integrity in vitro, with application of the SK inhibitors ABC294640, PF543, SKi, and MP-A08. In vivo studies were conducted using intravital microscopy to assess EC barrier integrity in SK-1 (Sphk1(-/-) ) and SK-2 (Sphk2(-/-) ) knock-out mice.Only ABC294640 and MP-A08, which can both inhibit SK-2, caused a decrease in EC barrier integrity in vitro in both cell types. Intravital microscopy revealed that Sphk1(-/-) mice had reduced EC barrier integrity compared to WT mice, whereas no change was evident in Sphk2(-/-) mice.Our data suggest that in vitro inhibition of SK-2, can compromise the integrity of the EC monolayer, while SK-1 exerts a more dominant control in vivo. These data may have clinical implications and could aid in the development of new treatments for disorders of vascular barrier function.David P. Dimasi, Stuart M. Pitson, and Claudine S. Bonde
Intracranial injection of dengue virus induces interferon stimulated genes and CD8(+) T cell infiltration by sphingosine kinase 1 independent pathways
We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-β (IFN-β) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.Wisam H. Al-Shujairi, Jennifer N. Clarke, Lorena T. Davies, Mohammed Alsharifi, Stuart M. Pitson, Jillian M. Car
Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival
Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg
Outcomes of a randomized controlled trial assessing a smartphone Application to reduce unmet needs among people diagnosed with CancEr (ACE)
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. Background: Smartphone technology represents an opportunity to deliver practical solutions for people affected by cancer at a scale that was previously unimaginable, such as information, appointment monitoring, and improved access to cancer support services. This study aimed to determine whether a smartphone application (app) reduced the unmet needs among people newly diagnosed with cancer. Methods: A single blind, multisite randomized controlled trial to determine the impact of an app-based, 4-month intervention. Newly diagnosed cancer patients were approached at three health service treatment clinics. Results: Eighty-two people were randomized (intervention; n = 43 and control; n = 39), average age was 59.5 years (SD: 12.9); 71% female; 67% married or in a de facto relationship. At baseline, there were no differences in participants’ characteristics between the groups. No significant effects, in reducing unmet needs, were demonstrated at the end of intervention (4-month) or 12-month follow-up. Overall, 94% used the app in weeks 1-4, which decreased to 41% in weeks 13-16. Mean app use time per participant: Cancer Information, 6.9 (SD: 18.9) minutes; Appointment Schedule, 5.1 (SD: 9.6) minutes; Cancer Services 1.5 minutes (SD: 6.8); Hospital Navigation, 1.4 (SD: 2.8) minutes. Conclusions: Despite consumer involvement in the design of this smartphone technology, the app did not reduce unmet needs. This may have been due to the study being underpowered. To contribute to a meaningful understanding and improved implementation of smartphone technology to support people affected by cancer, practical considerations, such as recruitment issues and access to, and confidence with, apps, need to be considered. Australian New Zealand Clinical Trials Registration (ACTRN) Trial Registration: 12616001251415; WEF 7/9/2016
A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties
The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes.Melissa R. Pitman, Jason A. Powell, Carl Coolen, Paul A.B. Moretti, Julia R. Zebol, Duyen H. Pham, John W. Finnie, Anthony S. Don, Lisa M. Ebert, Claudine S. Bonder, Briony L. Gliddon, Stuart M. Pitso
- …
