2,373 research outputs found

    One-year follow-up of family versus child CBT for anxiety disorders: Exploring the roles of child age and parental intrusiveness.

    Get PDF
    ObjectiveTo compare the relative long-term benefit of family-focused cognitive behavioral therapy (FCBT) and child-focused cognitive behavioral therapy (CCBT) for child anxiety disorders at a 1-year follow-up.MethodThirty-five children (6-13 years old) randomly assigned to 12-16 sessions of family-focused CBT (FCBT) or child-focused CBT (CCBT) participated in a 1-year follow-up assessment. Independent evaluators, parents, and children rated anxiety and parental intrusiveness. All were blind to treatment condition and study hypotheses.ResultsChildren assigned to FCBT had lower anxiety scores than children assigned to CCBT on follow-up diagnostician- and parent-report scores, but not child-report scores. Exploratory analyses suggested the advantage of FCBT over CCBT may have been evident more for early adolescents than for younger children and that reductions in parental intrusiveness may have mediated the treatment effect.ConclusionFCBT may yield a stronger treatment effect than CCBT that lasts for at least 1 year, although the lack of consistency across informants necessitates a circumspect view of the findings. The potential moderating and mediating effects considered in this study offer interesting avenues for further study

    Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content

    Get PDF
    In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex

    Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots

    Get PDF
    Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant

    Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin

    Get PDF
    Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and auxin during root formation and development, in particular in agronomically important plants, such as rice. Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux, i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASA2, IAA biosynthetic genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organization and development with negative consequences on root system architecture. This is due to a disturbance of IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic genes, and AUX1 and PIN5b transporter genes

    Constrained MaxLik reconstruction of multimode photon distributions

    Full text link
    We address the reconstruction of the full photon distribution of multimode fields generated by seeded parametric down-conversion (PDC). Our scheme is based on on/off avalanche photodetection assisted by maximum-likelihood (MaxLik) estimation and does not involve photon counting. We present a novel constrained MaxLik method that incorporates the request of finite energy to improve the rate of convergence and, in turn, the overall accuracy of the reconstruction

    Detection and characterization of a 500 μm dust emissivity excess in the Galactic plane using Herschel/Hi-GAL observations

    Get PDF
    Context. Past and recent observations have revealed unexpected variations in the far-infrared – millimeter (FIR-mm) dust emissivity in the interstellar medium. In the Herschel spectral range, those are often referred to as a 500 μm emission excess. Several dust emission models have been developed to interpret astrophysical data in the FIR-mm domain. However, these are commonly unable to fully reconcile theoretical predictions with observations. In contrast, the recently revised two level system (TLS) model, based on the disordered internal structure of amorphous dust grains, seems to provide a promising way of interpreting existing data. Aims. The newly available Herschel infrared GALactic (Hi-GAL) data, which covers most of the inner Milky Way, offers a unique opportunity to investigate possible variations in the dust emission properties both with wavelength and environment. The goal of our analysis is to constrain the internal structure of the largest dust grains on Galactic scales, in the framework of the TLS model. Methods. By combining the IRIS (Improved Reprocessing of the IRAS Survey) 100 μm with the Hi-GAL 160, 250, 350, and 500 μm data, we model the dust emission spectra in each pixel of the Hi-GAL maps, using both the TLS model and, for comparison, a single modified black-body fit. The effect of temperature mixing along the line of sight is investigated to test the robustness of our results. Results. We find a slight decrease in the dust temperature with distance from the Galactic center, confirming previous results. We also report the detection of a significant 500 μm emissivity excess in the peripheral regions of the plane (35° < |l| < 70°) of about 13–15% of the emissivity, which can reach up to 20% in some HII regions. We present the spatial distributions of the best-fit values for the two main parameters of the TLS model, i.e. the charge correlation length, lc, used to characterize the disordered charge distribution (DCD) part of the model, and the amplitude A of the TLS processes with respect to the DCD effect. These distributions illustrate the variations in the dust properties with environment, in particular the plausible existence of an overall gradient with distance to the Galactic center. A comparison with previous findings in the solar neighborhood shows that the local value of the excess is less than expected from the Galactic gradient observed here

    Towards joint reconstruction of noise and losses in quantum channels

    Get PDF
    The calibration of a quantum channel, i.e. the determination of the transmission losses affecting it, is definitely one of the principal objectives in both the quantum communication and quantum metrology frameworks. Another task of the utmost relevance is the identification, e.g. by extracting its photon number distribution, of the noise potentially present in the channel. Here we present a protocol, based on the response of a photon-number-resolving detector at different quantum efficiencies, able to accomplish both of these tasks at once, providing with a single measurement an estimate of the transmission losses as well as the photon statistics of the noise present in the exploited quantum channel. We show and discuss the experimental results obtained in the practical implementation of such protocol, with different kinds and levels of noise.Comment: 6 pages, 4 figure

    Human pharmacogenomic variation of antihypertensive drugs: from population genetics to personalized medicine.

    Get PDF
    AIM: To investigate the human pharmacogenetic variation related to antihypertensive drugs, providing a survey of functional interpopulation differences in hypertension pharmacogenes. MATERIALS & METHODS: The study was divided into two stages. In the first stage, we analyzed 1249 variants located in 57 hypertension pharmacogenes. This first-stage analysis confirmed that geographic origin strongly affects hypertension pharmacogenomic variation and that 31 pharmacogenes are geographically differentiated. In the second stage, we focused our attention on the ethnic-differentiated pharmacogenes, investigating 55,521 genetic variants. In silico analyses were performed to predict the effect of genetic variation. RESULTS: Our analyses indicated functional interpopulation differences, suggesting insight into the mechanisms of antihypertensive drug response. Moreover, our data suggested that rare variants mainly determine the functionality of genes related to antihypertensive drugs. CONCLUSION: Our study provided important knowledge about the genetics of the antihypertensive drug response, suggesting that next-generation sequencing technologies may develop reliable pharmacogenetic tests for antihypertensive drugs

    Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study.

    Get PDF
    Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells
    corecore