177 research outputs found

    Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators

    Get PDF
    Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators1, 2, 3, 4, 5, 6, 7. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy8, 9, 10, 11 between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10−8λ03. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters12. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies.Peer ReviewedPostprint (author's final draft

    Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials

    Full text link
    We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic potential V(x,t)=1/2a(t)x2+blnxV(x,t)={1/2}a(t)x^2+b\ln x. The underlying Euclidean metric of the problem allows us to obtain analytical solutions for a whole family of the elastic parameter a(t), exploiting the relation between the path integral representation of the short time propagator and the modified Bessel functions. We have also analyzed the conditions for the appearance of a non-zero flow of particles through the infinite barrier located at the origin (b<0).Comment: RevTex, 19 pgs. Accepted in Physical Review

    Stability and noise properties of diode lasers with phase-conjugate feedback

    Get PDF
    For a diode laser subjected to filtered feedback from a phase-conjugating mirror, we present the first exact stability analysis and various noise spectra. The stability properties are intermediate between those of the injection laser and the laser with conventional optical feedback. The role of a finite response-time is to drastically enhance the steady-state stability For moderate feedback, the frequency noise is suppressed by several orders of magnitude, and the main relaxation frequency of the laser shows a crossover from the usual relaxation oscillation frequency to a new frequency determined by the amount of feedback. This may be of technological importance since it is expected to improve the modulation bandwidt

    Elastic anomalies associated with domain switching in BaTiO3 single crystals under in-situ electrical cycling

    Get PDF
    The elastic response of BaTiO3 single crystals during electric field cycling at room temperature has been studied using in-situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90° switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the ferroelectric domains, as confirmed by polarized light microscopy. RUS under in-situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics

    Control of magnetic anisotropy by orbital hybridization in (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattice

    Full text link
    The asymmetry of chemical nature at the hetero-structural interface offers an unique opportunity to design desirable electronic structure by controlling charge transfer and orbital hybridization across the interface. However, the control of hetero-interface remains a daunting task. Here, we report the modulation of interfacial coupling of (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattices by manipulating the periodic thickness with n unit cells of SrTiO3 and n unit cells La0.67Sr0.33MnO3. The easy axis of magnetic anisotropy rotates from in-plane (n = 10) to out-of-plane (n = 2) orientation at 150 K. Transmission electron microscopy reveals enlarged tetragonal ratio > 1 with breaking of volume conservation around the (La0.67Sr0.33MnO3)n/(SrTiO3)n interface, and electronic charge transfer from Mn to Ti 3d orbitals across the interface. Orbital hybridization accompanying the charge transfer results in preferred occupancy of 3d3z2-r2 orbital at the interface, which induces a stronger electronic hopping integral along the out-of-plane direction and corresponding out-of-plane magnetic easy axis for n = 2. We demonstrate that interfacial orbital hybridization in superlattices of strongly correlated oxides may be a promising approach to tailor electronic and magnetic properties in device applications

    Optoelectronic reservoir computing: tackling noise-induced performance degradation

    Get PDF
    [eng] We present improved strategies to perform photonic information processing using an optoelectronic oscillator with delayed feedback. In particular, we study, via numerical simulations and experiments, the influence of a finite signal-to-noise ratio on the computing performance. We illustrate that the performance degradation induced by noise can be compensated for via multi-level pre-processing masks

    Elastic anomalies associated with domain switching in BaTiO3 single crystals under in situ electrical cycling

    Get PDF
    The elastic response of BaTiO3 single crystals during electric field cycling at room temperature has been studied using in situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90° switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the predominance of 180° ferroelectric domains, as confirmed by polarized light microscopy. RUS under in situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics
    corecore