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Stability and Noise Properties of Diode Lasers with
Phase-Conjugate Feedback

Wim A. van der Graaf, Luis Pesquera, and Daan Lenstra, Member, IEEE

Abstract—For a diode laser subjected to filtered feedback from a
phase-conjugating mirror, we present the first exact stability anal-
ysis and various noise spectra. The stability properties are inter-
mediate between those of the injection laser and the laser with
conventional optical feedback. The role of a finite response-time
is to drastically enhance the steady-state stability. For moderate
feedback, the frequency noise is suppressed by several orders of
magnitude, and the main relaxation frequency of the laser shows a
crossover from the usual relaxation oscillation frequency to a new
frequency determined by the amount of feedback. This may be of
technological importance since it is expected to improve the mod-
ulation bandwidth.

Index Terms—Frequency noise, phase-conjugate feedback, re-
laxation oscillation, semiconductor laser, stability.

I. INTRODUCTION

SEMICONDUCTOR lasers are of considerable importance,
for example, in optical communication systems. Their use-

fulness in coherent optical systems that require low phase noise
is hampered by their large linewidth [1] and sensitivity to ex-
ternal optical fields [2], [3], such as (monochromatic) light of
an independent source, and feedback from a conventional or
phase-conjugating mirror (PCM). This can give rise to many
types of instabilities, of which the enhancement of the relax-
ation oscillation (RO) is the most well known. However, when
applied appropriately, optical feedback can also be useful in re-
ducing phase noise.

For stabilization purposes, phase-conjugate feedback (PCF)
is preferred over conventional optical feedback (COF), since
the laser with COF is very sensitive to mirror distance varia-
tions within an optical wavelength [4]. This is due to the fact
that with an ordinary mirror, the phase of the returning light
depends strongly on the mirror position, while in phase-con-
jugation with external pumping, this dependence is greatly de-
creased [5]. Since the linewidth is linked to frequency noise at
zero frequency, the linewidth must decrease as well. However,
in the case of PCF, one is always confronted with a certain slug-
gishness of the reflector due to the finite response time, that
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should be taken into account when analysing the behavior of
the laser operation with a PCM. As we will show, this leads to
spectral filtering of the laser light. Most of the existing analyses
have disregarded this filtering [6]–[8].

Here we present an analysis of the stability and spectral
properties of the steady-state single-frequency operation of a
single-mode diode laser with PCF, including the finite response
time effect in the PCM. The noise spectra are studied in the
case of a free-running frequency resonant with the pump.
The phase-conjugate signal is assumed to be generated by
four-wave mixing in an externally pumped, fast-responding

-material. For the analysis, we linearize the rate equations
around the steady state. The stability is found by evaluating
the time evolution of small perturbations from the steady state
(disregarding noise), whereas noise spectra are found by inves-
tigating how the spontaneous-emission-induced white noise is
filtered by the laser. The time-delayed nature of the feedback
causes the characteristic equation, the roots of which determine
the stability, to have a complicated form. Some approximations
have been used in order to solve the characteristic equation [4],
[7], [9]. We show, by using another method [10], that in some
cases [7], the approximation is not correct. Our results show a
new stability region at a moderate feedback rate when a finite
mirror response-time is considered. In this stability region,
the frequency noise is decreased enormously. This increased
stability and noise reduction might lead to an enhancement of
the modulation bandwidth of the laser.

II. RATE EQUATIONS

When multiple external round trips can be ignored, the rate
equations for a single-mode semiconductor laser with sluggish
PCF are given by [11]

(1)

(2)

where is the number of electron–hole
pairs (inversion) in the active layer, and where:

slowly varying amplitude of the optical field with re-
spect to the optical carrier , with the
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emission frequency of the solitary laser (i.e., the same
laser without feedback) at threshold;
normalized such that equals the
number of photons inside the cavity;
inversion at threshold of the solitary laser;
differential gain;
nonlinear gain parameter;
photon decay rate;
linewidth enhancement factor;
feedback rate;
response time of the mirror;
detuning of the mirror pump-beam with respect to;
external cavity round-trip time;
number of carriers injected into the active layer per unit
of time by means of an electrical current;
carrier lifetime.

Due to the finite response-time , the feedback term in (1) de-
pends on the optical field at and before time . In the limit

, the feedback term reduces to the one given by, e.g., Van
Tartwijk et al. [6]. If the mirror responds on a time-scale which
is faster than that of all other laser dynamics, instantaneous re-
sponse is a good approximation. Most research in the litera-
ture uses this approximation. However, in practice, the PCM re-
sponse time will always be finite.

The Langevin forces account for spontaneous
emission noise, have an average of zero and are-corre-
lated [12]: , and

, where is the rate of spontaneous emis-
sion into the lasing mode . Note that the symbol ,
which is commonly used in this context, is not the same as the

which is sometimes used as the ratio of spontaneous emission
in a mode to the total amount of spontaneous emission.

We proceed by writing down the rate equations in polar coor-
dinates (power and phase instead of the complex electric field).
For this, it is handy in further work to first introduce the feed-
back field

(3)

The single rate-equation (1) is now split into two. Together with
an initial condition satisfying (3), these are equivalent to the
original (1).

Now we use polar coordinates: and
and write down the rate equations

for and

(4)

(5)

(6)

(7)

(8)

We are interested in a state in which the laser emits single-fre-
quency, constant-amplitude light, the steady state. Therefore, we
disregard the Langevin noise terms, but take into account the
average noise-effect as expressed by the term in (4). In
the steady state one, has ,
and and are varying linearly with time. This can
happen only when the laser is locked to the frequencyof the
mirror pump-beams. It then follows that and

.
Without noise and nonlinear gain ( and ) the

solutions, if they exist, are found to be

(9)

and

(10)

where is the intensity of the solitary laser. After solving for
the power and inversion, the phasecan be found as well. This
phase is determined by the interaction of the laser and the PCM
(pump). In fact, it is the phase difference between the laser light
and that of the pump. It can only be varied via other parameters,
such as the detuning frequency. Therefore, we disregard it in the
remainder of this paper. From (9), one can see that steady state
is obtained if, and only if, the frequency satisfies

(11)

This defines a locking range, in close analogy with the injection
laser.

For a laserwith nonlinear gain, and taking into account
the average effect of noise, the situation is more complicated,
and we treat the noise and nonlinear-gain effects as pertur-
bations and iterate numerically. As a starting guess, we take
the steady state without nonlinear gain whenever possible.
Otherwise, i.e., outside the locking range, we start from the
solitary laser steady-state. Since nonlinear gain describes the
intensity-induced change of the laser dynamics, the intensity
of the initial guess is used for calculating a modified inversion.
This inversion is then used for determining a new value for
the laser light intensity. This procedure is repeated a few times
until the desired accuracy is obtained.

In the case of a diode laser with conventional optical feed-
back, the external round-trip delay gives rise to "external cavity
modes" (ECMs). This is related to the corresponding round-trip



564 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 4, APRIL 2001

phase being equal to a an integral multiple of . The
number of ECMs involved is then roughly equal to

(see [2]). Hence, even for moderate amounts of feedback, there
may be already a lot of ECMs, where each ECM corresponds to
a steady state of monochromatic laser operation. In the present
case of phase-conjugate feedback, buildup of round-trip phase is
also possible, but locking to a nonzero integral multiple ofis
impossible, as follows from the steady state analysis described
above. Indeed, the only possible steady state corresponds to
locking of the laser to the pump frequency of PCM, in which
case the round-trip phase vanishes exactly.

III. STABILITY OF THE STEADY STATE

Considering small deviations from the steady state allows
one to derive the local stability of the steady state and the laser
spectra. The stability is found by studying the growth or decay
of the deviations, while the noise spectra are found by looking
into how the spontaneous emission noise propagates in the laser
light fluctuations. The usual way to investigate this is to con-
sider the rate equations when linearized around the steady state.
Concerning the stability, the information thus obtained is the
local stability. In other words, if the fixed point turns out to be
stable, there may still be other attractors, which may even have a
larger basin of attraction. The spectra which are calculated using
linearized rate equations are accurate only when the noise fluc-
tuations are not so large that nonlinearities must be taken into
account.

Defining the vector as the deviation from the steady
state,

, we find the linearized rate-equations,
which form a system of five coupled linear delay-differential
equations, with the additional Langevin noise:

(12)

We now calculate the stability and, therefore, disregard the
Langevin noise. The system can be formally solved using
Laplace-transform techniques [13]. Laplace transformation
yields

(13)

where is the unit matrix.
The laser system, as described by (9), is locally stable if,

and only if, all roots of the characteristic equation
are located in the negative half-plane,

that is, to the left of the imaginary axis. Our search for the sta-
bility of the laser with phase-conjugate feedback is thus equiv-
alent to knowing whether or not all roots of the corresponding
characteristic equation have negative real parts. Writing out the
full -dependence of yields

(14)

TABLE I
VALUES OF THEPARAMETERSUSED IN THECALCULATIONS

where the coefficients are functions of the laser parameters
and the steady state under consideration. In the case of instan-
taneous feedback, a third order polynomial is obtained, where
again some of the coefficients contain an exponential term. Ex-
plicit expressions for the coefficients can be found in [3] or
the Appendix. Here, we clearly see why it is more difficult to de-
termine the stability of a feedback system than that of a system
without time delay : without delay, would be a
polynomial in , which can easily be solved. The presence of
the exponential makes analytical progress difficult, since
in general has infinitely many roots which cannot be
found analytically. Therefore, we will resort to another method
to solve for the stability; that is, we do not calculate the roots
explicitly.

There is a simple case, however, where one can determine
the stability immediately: if is negative, there must be at
least one positive real root, and hence the system is unstable.
Without noise, and assuming linear gain, the criterion
is equivalent to the requirement that .
Consequently, of the two solutions in (9), the one with the largest
inversion is always unstable. This does not imply stability for
the other solution.

Because, in general, one cannot determine the stability easily,
the exponential is sometimes approximated in the literature by
expanding it to first order: . In many cases, this is
a poor approximation: when the RO undamps, one has ,
where for low feedback-rates will be close to the angular RO
frequency of the solitary laser . Taking a realistic
value of the RO of 3 GHz, already equals one for a cavity
length of less than a centimeter. Without trying to be exhaustive,
other approaches found in the literature are: assuming certain
parameters to be small [9], or a numerical search for the roots
[14].We use an alternative approach by using the principle of the
argument in an exact determination of the fixed-point stability
(see the Appendix).

A. Results

The technique outlined above is now used for calculating
stability diagrams, where we use parameter values as listed in
Table I. These values, which are identical to those used by De-
Tienneet al. [11], correspond to a laser pumped 5% above its
solitary threshold, and MHz. Variation of and
confirms the well-known behavior; that is, a largergives rise



VAN DER GRAAF et al.: STABILITY AND NOISE PROPERTIES OF DIODE LASERS WITH PHASE-CONJUGATE FEEDBACK 565

(a)

(b)

Fig. 1. Feedback rate
 at which the laser changes stability as a function
of the cavity round-trip time� , normalized to the RO period. (a) The laser is
stable for low feedback and becomes unstable upon increasing
 . The stability
boundary depends periodically on� . (b) Increasing the feedback rate further ,
the laser becomes stable again, due to the sluggishness of the mirror.

to a smaller region of stability, whereas the inclusion of non-
linear gain enhances the stability. In the graphs presented here,
the gain is taken to be linear.

For the case of zero detuning , Fig. 1 shows the sta-
bility diagram when and are varied for several values of the
mirror response time. Focusing first on only, we see that
for very small feedback rates, the laser is stable [see Fig. 1(a)].
Upon increasing the feedback, it becomes unstable. Note the pe-
riodic modulation of the stability-edge curve with a lower sta-
bility-limit when the RO matches an external round-trip reso-
nance; that is, when is an integer. This was not seen by
Agrawal and Gray [7] due to the above-mentioned lowest order
expansion of the exponential. On the other hand, it is similar
to what was found by Ritter and Haug [9] and Mørk [15] for a
laser with COF, although they found higher stability tongues at
integral values of . This behavior for the PCF from an
instantaneous mirror has also been discussed by Murakami and
Ohtsubo [16]. As yet, we have not found an explanation for this
apparent difference.

Comparing PCF from an instantaneous mirror with that from
a slow mirror, we see that the stability enhances slightly with
increasing . This is caused by the mirror-induced spectral fil-

tering of the reflected field, suppressing frequencies larger than
. A similar behavior was found recently in the case of COF

[17]. More striking is the shifted location of the stability peaks
which, in view of the time delay in the mirror, resembles a situ-
ation of an external round-trip length larger than in an instanta-
neous mirror. The effective round-trip length enhancement is not
sharply defined, which reduces the quality of the resonance for
large . Since the relative importance of this increases when
gets smaller, this may explain why the peak at
is lower for 400 ps than for shorter response times.

We also investigate the behavior at moderate feedback. The
result is plotted in Fig. 1(b) [note the different scales along both
the – -axes, compared to Fig. 1(a)]. The stability of the laser
is enhanced enormously by the sluggish mirror: for an instan-
taneous mirror there is only a small region for short cavities
where stability is found at higher values of the feedback rate,
whereas over the whole range ofindicated in the figure, the
PCF laser is stable at higher feedback for mirror response times
of 100 and 400 ps. DeTienneet al.[11] already found in numer-
ical simulations that the standard deviation of the output power
was much smaller for reflectivities on the order of 4%. Here, we
have shown that it corresponds to stable steady-state operation
of the laser. In the instability region, DeTienne found pulsations
of which the frequency increases with. In Section IV-A, we
will consider this resonance frequency in more detail and derive
an expression for it. The structure in the higher stability bound-
aries of the right figure is caused by this frequency matching
an external round-trip resonance. Therefore, this is analogous
to the oscillations in Fig. 1(a).

The influence of the detuning on the stability is shown
in Fig. 2. For weak feedback we see a narrow band of stable
operation, but this band widens for higher feedback and, finally,
we find a large region of stable laser output, which is consistent
with Fig. 1(b). Notice that for an instantaneous mirror one has
not reported such large regions of stability. The general shapes
of the curves for finite resemble the stability diagram of a
diode laser with external optical injection [18]. Also, the low-
feedback part of the stability diagram with is very
similar to the corresponding part of the injection laser stability
diagram. Again, we see here the destabilizing influence of the
RO matching an external round-trip resonance [see Fig.2(b)].

As a last result, we show the effect of a higher pump current
on the stability diagrams in the -plane for zero detuning.
Fig. 3 has the same parameters as Fig. 1, except that the cur-
rent is now 50% above threshold, instead of 5%. There are two
major changes: due to the higher RO frequency, there are more
oscillations in the same range of, and the stability at moderate
feedback sets in at a higher feedback strength. When we calcu-
late spectra in the next section, we take the laser to be pumped
50% above threshold.

All stability diagrams were checked by direct numerical inte-
gration of rate equations (1) and (2) at several points of the sta-
bility diagrams, and no discrepancy between the two methods
was found.

In line with our results, Bochove [14] reports on stable be-
havior regardless of the feedback strength for certain values of
the “phase” in a laser with an instantaneous mirror. This could
correspond to the channel of stable laser operation, as shown in
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(a)

(b)

Fig. 2. Stability of the PCF laser as a function of
 and the pump detuning� .
The dashed-dotted curve corresponds to an instantaneous mirror at! �=2� =

0:5. All other curves have;t = 100 ps. To the left of the solid line, no
steady-state solutions exust, independent of� or t ; therefore, the solid line
indicates the locking range. (b) A close-up of the region near the origin of (a).

Fig. 2. However, due to the different representation, his results
are sometimes difficult to compare with ours. Note that our main
concern here is the influence of the response time of the mirror,
which Bochove addresses very briefly. He has not performed
a systematic analysis of and, for example, did not find the
upper stability regime as depicted in our Fig. 1(b).

Experimental work on phase-conjugate feedback in a diode
laser was reported by Andersenet al. [19]. In this experiment,
an externally pumped rubidium cell was used as a phase-conju-
gating mirror, where the spectral lineshape of the Rb transition
at 780 nm is roughly equivalent to a finite response time be-
tween 100–300 ps, i.e., well within the range studied here. The
main result reported in the above-mentioned reference is a sta-
bility diagram indicating the various types of experimentally ob-
served behavior as a map in the feedback level versus detuning
plane. A narrow locking range extending into the negative de-
tunings was observed, as well as the Hopf-bifurcation instability
boundary, in agreement with our theory. The predicted return to
stable locking for high feedback levels could not be observed in
the experiment, simply because the spectral filtering of the feed-
back light did not allow the necessary high feedback strengths.

(a)

(b)

Fig. 3. Stability diagram of a PCF laser pumped 50% above threshold for: (a)
low and (b) moderate feedback rates. Due to the higher RO frequency,! �
oscillates more rapidly with� than in Fig. 1.

IV. NOISE SPECTRA

In order to determine the optical spectra, we Fourier trans-
form the linearized rate-equations. This yields

(15)

Here, is the Fourier transform of , and that of
the vector containing the Langevin noise. From (15), one
finds how spontaneous emission affects the power and phase

(16)

(17)

where is the determinant of . In terms
of the determinant, found by Laplace transformation in the
stability analysis of a laser with PCF (see Section III), is
equal to . Furthermore, are the minors of

. The noise forces have correlation functions given
by , and

, and we arrive at the following
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equations for the relative intensity noise (RIN) and frequency
noise spectrum (FNS) in the steady state:

(18)

(19)

A. Results

Using the expressions derived in the previous section, we cal-
culate the RIN and FNS for the case of zero pump-detuning

. We take the the laser to be pumped 50% above
threshold, s . We do this because 50% above
threshold the intensity fluctuations due to spontaneous emission
are much smaller than at 5% above threshold. Therefore, we ex-
pect the linearized rate equations to give a better description.
Furthermore, we assume linear gain . The other parame-
ters are taken from Table I. With these parameter values, the RO
frequency of the solitary laser is 2.415 GHz. The relevant
stability diagrams for these parameters are sketched in Fig. 3.
In the first instance, we investigate the low-feedback stable re-
gion, assuming a feedback rate s , and consider
the high-feedback steady state later on.

In Figs. 4 and 5(a), the RIN and frequency noise spectra are
depicted for an instantaneous mirror and a PCM with a 400-ps
response time. The delay time in the external cavity is 207 ps,
which implies a steady state ‘under the first peak’ in Fig. 3(a).
The spectra for the solitary laser are shown for comparison. The
spectra agree qualitatively with those obtained by Agrawal and
Gray [7] and Petersenet al. [20] for an instantaneous PCM.
There is one clear discrepancy, however. Compared with the
solitary laser, Agrawal and Gray see a shift of the RO frequency
in the laser with PCF, whereas Petersen and we do not see such
a shift. We think this difference is due to the fact that [7] has
approximated the exponential by , which we argued
can be problematic (see Section III). Note that the frequency
noise approaches zero when . This is due to the phase-
compensating nature of a PCM, which fixes the phase in the long
run. The figures also show a slight enhancement of the RO peak
for the PCM with 400-ps response time. We address this point
later on. In the sequel, we consider only the calculation of the
FNS. We do this because, apart from the gross features seen in
the figures, the FNS and RIN spectrum show similar behavior;
for example, a resonance in the FNS is generally seen in the
RIN spectrum as well. Furthermore, the most important effect
of phase-conjugate feedback is on thephase.

The FNS when the mirror is placed twice as far from the laser
( ps, ) is plotted in Fig. 5(b). This spec-
trum is almost identical to the spectrum in Fig. 5(a), except for a
substantial rise in the RO peak for an instantaneous mirror. Cal-
culation of several more noise spectra shows that, for ,
the height of the RO peak changes periodically with the cavity
length; it is highest when is an integer, and lowest when

is a half-integer. The reason for this is clearly the same
as the origin of the modulation in the stability diagram Fig. 3:
when the RO matches an external round-trip resonance, the sta-
bility is decreased.

Fig. 4. RIN spectrum in the low feedback regime. The external delay time is
207 ps, corresponding to! �=2� = 0:5.

(a)

(b)

Fig. 5. The frequency noise spectrum in the low feedback regime. (a) The
external delay time is such that! �=2� = 0:5. (b)! �=2� = 1.

The variation of the height of the RO peak with the cavity
length is not seen when the PCM has a 400-ps response time.
We explain this by the fact that, for large , the mirror tends to
diffuse the quality of the resonance because the cavity length is
not so sharply defined anymore [see Fig. 1(a) and the discussion
there, and Fig. 3(a)]. Therefore, for large, the round-trip reso-
nances are less well-defined. This phenomenon shows up when

becomes of the order of the RO period (414 ps). This is
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Fig. 6. The height of the RO peak as a function of the mirror response time
t . The external delay times are 207 ps (dashed curve,! �=2� = 0:5) and
414 ps (solid curve,! �=2� = 1); see also Fig. 3.

seen clearly in Fig. 6, where we have plotted the height of the
RO peak as a function of the mirror response time for external
delay times 207 ps (where the peak is relatively minimum)
and 414 ps (where the peak is relatively maximum). For
mirror response times larger than about 200 ps, the height of the
RO peak in the FNS is almost insensitive to the external cavity
length.

We now come to the spectra of the laser in the upper stability
regime (see Fig. 3(b) for the relevant stability diagram). Because
the laser with PCF from aninstantaneousmirror does not be-
come stable for higher feedback-levels, we must consider finite
response times ( ps). The frequency noise spectra for a
solitary laser and a laser with a 100- or 400-ps PCM are depicted
in Fig. 7(a) for a feedback rate s and a 10-cm
external cavity ( 667 ps). Especially for ps, reso-
nances are seen. Also, Petersen [20] and Bochove [14] found
such oscillations in their spectra for an instantaneous mirror
with . These resonances are not related to the RO, but
correspond to the double-round-trip modes which were first de-
scribed by AuYeunget al. [21]. Apart from the fact that the
larger mirror response time almost washes out these resonances
at 400 ps, the spectra for 100 and 400 ps are equal. Com-
parison with the spectrum of the solitary laser shows that the RO
peak has disappeared. A broad resonance at about 2.7 times the
RO frequency is found instead. Furthermore, the overall noise
level is decreased by several orders of magnitude.

In order to understand the origin of the peak at ,
we consider a short cavity ( cm, ps) and a
mirror response time of 400 ps. Because of the short cavity
length, the double round-trip resonances do not obscure the
peak under consideration so much, an effect which is enhanced
by the relatively large value of . With these parameters, the
FNS is shown in Fig. 7(b) for several feedback rates, ranging
from 3500 to s . The frequency of the main
resonance increases with, whereas the total noise level is
drastically reduced. It turns out that, in good approximation,
varies linearly with (the dependence is slightly superlinear),
at least in the interval considered. The variation of several other
laser parameters does not reveal any substantial influence on the
frequency .

(a)

(b)

Fig. 7. (a) FNS for a solitary laser and for a PCF laser with parameters
 =

4000�10 s and� =667 ps. (b) FNS for several feedback rates fort =400
and� =66.7 ps.

A feeling for the origin of the resonance atcan be obtained
by realizing that there is a frequency in the laser-with-PCF
system that is proportional to the feedback strength: the laser
resonance frequency at a given inversionwith respect to the
solitary laser frequency is given by

(20)

while for zero pump-detuning, the inversiondepends linearly
on [see (9)]. Combining (20) with (9) yields

(21)

This explains why does not depend on other parameters. Even
the dependence onis very limited since is almost
equal to one when . Below, we analyze the roots of the
characteristic equation , and this yields the same result
[(21)] when large.

Now we try to find the dependence of the frequencyfound
in the frequency noise spectra at high feedback-rates from the
characteristic equation as given by (14). This is ex-
pected to yield relevant information since the expression (19)
for the FNS is inversely proportional to .
In the spectra calculated in this section, we did not find a no-
ticeable dependence of on the cavity length up to cavities
as short as 0.5 cm. This motivates us to consider the case of
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(a)

(b)

Fig. 8. (a) Eigenvalues of the characteristic equation for� = 0 move in the
complex plane as a function of
 . The crosses indicate the locations at
 =

0. (b) The imaginary part of the eigenvalue corresponding to the RO at low
feedback rate as a function of the feedback rate (solid curve). The dashed line
gives the high-feedback-rate limit.

zero cavity-length in approximating the roots. In doing
so, simplifies considerably, and it is easy to follow the
roots of the resulting polynomial of degree five numerically as
a function of . The roots move in the complex plane as indi-
cated in Fig. 8(a). Three roots are found to move in the nega-
tive half-plane , while the other two form a com-
plex conjugate pair which crosses the imaginary axis twice. Fo-
cusing on the solution of this complex conjugate pair which
has a positive imaginary part, it is found that is has a negative
real part and an imaginary part equal to for , cor-
responding to a damped RO. Upon increasing, it moves to
the right and crosses the imaginary axis in a Hopf bifurcation,
which is the undamping of the RO. Then it bends upward (the
frequency starts increasing) and, finally, it moves back to the
negative half-plane (the laser becomes stable again) while the
frequency keeps increasing. We have plotted the imaginary part
of the eigenvalue as a function of in the right of Fig. 8(b). For

s , the imaginary part of the eigen-
value is , in agreement with the found from Fig. 7.

It is possible to find the relevant root of analytically
for large feedback rates. We then assumeto be larger than

all other inverse time scales: the inverse mirror response time,
the RO frequency, and the RO damping rate. The characteristic
equation then simplifies to

(22)

With (which holds when ), the solu-
tions are

and (23)

For large values of , the frequency therefore reads

(24)

in accordance with (21). depends linearly on , and this has
been plotted in Fig. 8(b) (dashed line). It can be seen that (21)
yields a good description when .

This resonance explains the frequency dependence of the pul-
sations of the laser with a 400-ps response time PCM as found
by DeTienneet al. [11]. In a numerical simulation, they found
that the frequency of the pulsations (with a modulation depth of
100%) depends almost linearly on the feedback rate. We have
calculated the roots of the simplified (we have taken )
characteristic equation using their parameters and found ex-
cellent agreement. Hence, the pulsating behavior of the laser
in the unstable (nonmonochromatic light emission) regime and
the resonance in the noise spectra in the stable regime have
a common origin in the detuning between the eigenfrequency
(20) of the compound system and the actual lasing frequency as
posed by the mirror pump beams.

V. CONCLUSION

We have performed an exact linear-stability-analysis of a
single-mode semiconductor laser with filtered phase-conju-
gate feedback from a mirror that is pumped externally. In
the weak-feedback part of the -plane, the periodic
modulation of the stability-edge curve is due to the effective
external delay time being an integer multiple of the relaxation
oscillation period. A finite mirror-response time tends to
stabilize the system: the low-feedback stability-edge curve
shifts upwards with . This can be understood physically
from the filtering nature of the PCM. Upon further increase of
the feedback rate, the PCF laser becomes stable once more if
the mirror has a finite response time. This new stability region
is in sharp contrast to the unstable behavior of a laser with an
instantaneously responding mirror with the same amount of
feedback. The stability areas for low and moderate feedback
are not two distinct regimes, but they are connected in the

-space, which is apparent from the -slice
shown in Fig. 2(a). This picture, in a sense, unifies the two
figures of Fig. 1.

For a diode laser with phase-conjugate feedback, we have cal-
culated noise spectra, where we focused on the frequency noise.
The height of the RO resonance for a laser with instantaneous
PCF is very sensitive to the external cavity length: when the
RO period fits the external cavity an integral number of times,
the height of the RO peak is enhanced. A finite mirror-response
time larger than effectively washes out this sensitive de-
pendence on. In the high feedback regime (which is found for
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finite only), the frequency noise is reduced drastically. Also,
the main resonance is found to increase almost linearly with the
feedback rate and can easily obtain frequencies as high as.
This resonance is attributed to the inversion dependence of the
intrinsic laser resonance, where the inversion is changed due to
the feedback. This situatioin is similar to the case of injection
locking. It also explains the behavior of the pulsation frequency
found in simulations by DeTienneet al. [11].

APPENDIX

PRINCIPLE OF THEARGUMENT

The method we use for testing whether the characteristic
equation has roots in the left half-plane (LHP)
is very much related to the Nyquist Analysis in engineering
sciences [22]. It has previously been applied1 to a laser with
conventional optical feedback by Jaskorzyn´ska and Lenstra
[23] and Cohenet al. [10]. It is based on the following theorem
from the theory of functions of one complex variable [22].

Theorem 1: If is a closed contour in the complex-plane
and is an analytic function on and inside, except for a
finite number of poles inside , and on , then

(25)

where
total number of zeros inside;
total number of poles inside;

.
With the well-known expression for the winding number, one
sees that

(26)

Since is closed, the image of in the -plane is closed,
and the net change in the angle is times the number
of encirclements of the origin in the -plane. The result
that is often called theprinciple of the argument.

We apply this theorem to the function given by

(27)

and introduce the variable . We choose the contour
to be a semicircle in the right half-plane (RHP) and close it

along the imaginary axis [see Fig. 9(a)]. In the limit , the
contour encloses the entire RHP. The image ofunder in
the -plane is called . Clearly, does not have any poles in
the RHP. Since the laser is stable if and only if the zeros of
are in the LHP, the criterion for stability is that the imageof
does not enclose the origin (the total number of encirclements

is zero). It is easily verified that , and because
is symmetric in the real axis, is too. Denoting the arc con-

necting the points and by , we only consider the image
of the upper part of the contour . The image of the

lower part is found by reflection in the real axis (see Fig. 9).

1Notice that DiStefanoet al. [22] define aclockwisetraverse around a con-
tour as thepositivedirection, and all points to theright of a contour when it is
traversed in a prescribed direction as beingenclosedby it. This is different from
most mathematical literature.

(a)

(b)

(c)

Fig. 9. (a) The contourC (in thes-plane) encloses the entire RHP in the limit
R ! 1. The other two figures are sample contours in the�-plane. (b) The
origin is not enclosed and the laser is therefore stable. (c) The laser is unstable
since the contour� encloses the origin.

Since for very large, one has , the seg-
ment maps onto almost the same segment in the-plane. The
image of the remaining segment must now be such that
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the total image contour doesnot enclose the origin. In a situ-
ation where maps as sketched in Fig. 9(b), the laser is stable,
whereas Fig. 9(c) represents an unstable situation.

It is seen that when (which is a real number) is negative,
the origin is encircled by and the laser is unstable. This cor-
responds to the case in Section III.

The number of encirclements can be found by counting the
number of intersections of with the negative real axis. If
crosses this half-line as many times going up as going down, the
number of encirclements is zero and hence the laser is stable. We
have determined the number of intersections numerically.

APPENDIX

COEFFICIENTS

First we write the Laplace transform of the linearized rate
equations as

(28)

where is the part with . The matrix represents the
contribution of noise and nonlinear gain. From this we derive the
inverse transfer matrix with (for noninstantaneous
PCF)

(29)

and

(30)

For instantaneous PCF, the matricesand are given by

(31)

and

(32)

The coefficients and are given by

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

The system determinant can, for
finite response times, be written as

(45)

where the coefficients are given by

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

In order to facilitate the above expressions we introduced the
parameters , and :

(56)

(57)

(58)

(59)

(60)

(61)

(62)

The system determinant for a laser with instantaneous feedback
is obtained from (31) and (32). The resultingthird-order poly-
nominalcan be found from (45) by multiplication with and
taking the limit .
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For the calculation of the noise spectra, we need the minors
, and . We express the minor

as

(63)

The coefficients (for noninstantaneous PCF) are given by

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

The following additional parameters were introduced for nota-
tional convenience:

(96)

(97)

(98)

(99)

(100)

(101)

(102)

The minors obtained with instantaneous PCF are again obtained
by multiplication with and taking the limit .
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