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Stability and Noise Properties of Diode Lasers with
Phase-Conjugate Feedback

Wim A. van der Graaf, Luis Pesquera, and Daan Lensfiember, IEEE

Abstract—For a diode laser subjected to filtered feedback froma  should be taken into account when analysing the behavior of
phase-conjugating mirror, we present the first exact stability anal- - the laser operation with a PCM. As we will show, this leads to

ysis and various noise spectra. The stability properties are inter- TP ; fti
mediate between those of the injection laser and the laser with ﬁgﬁgiﬁ;:‘ggg;&%gﬂ%: ;ﬁtst’aer:’r:g%]—'\?gft of the existing analyses

conventional optical feedback. The role of a finite response-time - o
is to drastically enhance the steady-state stability. For moderate ~ Here we present an analysis of the stability and spectral
feedback, the frequency noise is suppressed by several orders ofproperties of the steady-state single-frequency operation of a
magnitude, and the main relaxation frequency of the laser shows a single-mode diode laser with PCF, including the finite response

crossover from the usual relaxation oscillation frequency to anew yimae effect in the PCM. The noise spectra are studied in the
frequency determined by the amount of feedback. This may be of faf o f t with th
technological importance since it is expected to improve the mod- ¢@S€ OF @ Irée-running firequency resonant wi € pump.

ulation bandwidth. The phase-conjugate signal is assumed to be generated by
Index Terms—Frequency noise, phase-conjugate feedback, re- fogr-wave _lelng In-an extgrnally _p”mPed' fast-respond_lng
laxation oscillation, semiconductor laser, stability. x®-material. For the analysis, we linearize the rate equations

around the steady state. The stability is found by evaluating
the time evolution of small perturbations from the steady state
(disregarding noise), whereas noise spectra are found by inves-
EMICONDUCTOR lasers are of considerable importancégating how the spontaneous-emission-induced white noise is
or example, in optical communication systems. Their usélltered by the laser. The time-delayed nature of the feedback
fulness in coherent optical systems that require low phase nofgeises the characteristic equation, the roots of which determine
is hampered by their large linewidth [1] and sensitivity to exthe stability, to have a complicated form. Some approximations
ternal optical fields [2], [3], such as (monochromatic) light ohave been used in order to solve the characteristic equation [4],
an independent source, and feedback from a conventional[ &y [9]. We show, by using another method [10], that in some
phase-conjugating mirror (PCM). This can give rise to margases [7], the approximation is not correct. Our results show a
types of instabilities, of which the enhancement of the relaxew stability region at a moderate feedback rate when a finite
ation oscillation (RO) is the most well known. However, whemirror response-time is considered. In this stability region,
applied appropriately, optical feedback can also be useful in tbe frequency noise is decreased enormously. This increased
ducing phase noise. stability and noise reduction might lead to an enhancement of
For stabilization purposes, phase-conjugate feedback (P@® modulation bandwidth of the laser.
is preferred over conventional optical feedback (COF), since
the laser with COF is very sensitive to mirror distance varia-
tions within an optical wavelength [4]. This is due to the fact

that with an ordinary mirror, the phase of the returning light wWhen multiple external round trips can be ignored, the rate

depends strongly on the mirror position, while in phase-coBguations for a single-mode semiconductor laser with sluggish
jugation with external pumping, this dependence is greatly decF are given by [11]

creased [5]. Since the linewidth is linked to frequency noise at

zero frequency, the linewidth must decrease as well. However,

i i i i o 1 AN(t) — el'gP

in the case of PCF, one is always confronted with a certain slug By =L <§ (t) — Lo P(t) n z‘a§AN(t)> E() ()
gishness of the reflector due to the finite response time, that 1+ eP(2)

|I. INTRODUCTION

Il. RATE EQUATIONS

2
+ ﬁemo (t—7/2)
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emission frequency of the solitary laser (i.e., the same Pay(t) = _tipfb(t) + ti P(t — )P (%)

laser without feedback) at threshold; m m
E  normalized such thatE(t)|? = P(t) equals the x cos[p(t — 7) + d(t) — 260(t — 7/2)]  (6)
number of photons inside the cavity, . 1 [P@Et-1)
Ny, inversion at threshold of the solitary laser; Pm(t) = 6o — . T(t)
© nonlinear gan parameter gl )+ dalt) - 20t/ D)
I,  photon decay rate; N(t) = =2Ar[N(t) — Nen] — {L'o + £[N(t) — Nuw]}
«a  linewidth enhancement factor; y P(t) — Po— e P(t) ®)
v,  feedback rate; 14 eP(t)

t response time of the mirror; . . . _ o
. P We are interested in a state in which the laser emits single-fre-

. fthe mi i ith )
6o detuning of the mirror pump-beam with respeciig; quency, constant-amplitude light, the steady state. Therefore, we

xternal cavity round-trip time; ) . . .
’ external ca ty. ou. d trip t. © . isregard the Langevin noise terms, but take into account the
J number of carriers injected into the active layer per unj : X
. . ) average noise-effect as expressed by the tg#fi(¢) in (4). In
of time by means of an electrical current;

T ior lifeti the steady state one, h&¥t) = Pu,(t) = P, N(t) = N,
D ! r(]:a:c_rle_r eume. - he feedback in (1) d and ¢(¢) and ¢g,(t) are varying linearly with time. This can
ue to the finite response-tintg, , the feedback term in (1) e'happen only when the laser is locked to the frequeiayf the

pends on the optical field at and before time 7. In the limit ... 0 0 pes e It then follows thats) — 8ot and
tm — 0, the feedback term reduces to the one given by, e.g.,ngnL(t) zuéott)_ P ' ws thatt) of + ¢

Tartwijk et al.[6]. If the mirror responds on a time-scale which Without noise and nonlinear gai (= 0 ande = 0) the
is faster than that of all other laser dynamics, instantaneous LBlutions. if they exist, are found to be

sponse is a good approximation. Most research in the litera- ’ ’

ture uses this approximation. However, in practice, the PCM re-

sponse time will always be finite. 2080 £ 24 /72 (1 4+ a?) - 63
NS = Nth + (9)

The Langevin forcesFg(t) account for spontaneous €1+ a2)
emission noise, have an average of zero and é&cerre- and
IaI;edt[;Z]:élFE(_t)z) :hO, <ZE'(t)ﬂ}:E(t/2> :f Ré(tt — ), and_ P_p_ 2Ar(N, — Niy) (10)
(Fr(t)Fr(t)) = 0, whereR is the rate of spontaneous emis- s 0 To+ (N, — N

sion into the lasing mod& = 43 N. Note that the symba?¥,

which is commonly used in this context, is not the same as tigere P, is the intensity of the solitary laser. After solving for

B which is sometimes used as the ratio of spontaneous emissieé power and inversion, the phagecan be found as well. This

in a mode to the total amount of spontaneous emission.  phase is determined by the interaction of the laser and the PCM
We proceed by writing down the rate equations in polar coofpump). In fact, it is the phase difference between the laser light

dinates (power and phase instead of the complex electric fielghd that of the pump. It can only be varied via other parameters,

For thiS, itis handy in further work to first introduce the feedsuch as the detuning frequency_ Therefore, we disregard itin the

back field £, (t) remainder of this paper. From (9), one can see that steady state

is obtained if, and only if, the frequendy satisfies

t
Ey(t) = LCQiéo(t—r/Q)/ E* (6 — T)C—(l/tm.q_iao)(t,g) .

_ _ ) o This defines a locking range, in close analogy with the injection
The single rate-equation (1) is now splitinto two. Together ity ger.

an initial condition satisfying (3), these are equivalent to the o 5 |aserwith nonlinear gain, and taking into account

original (1). _ ‘ the average effect of noise, the situation is more complicated,
Now we use polar coordinate#(t) = /P(t)c’*"” and ang we treat the noise and nonlinear-gain effects as pertur-
Eq(t) = /Pa(H)e'*®) and write down the rate equationsyations and iterate numerically. As a starting guess, we take
for P, ¢, Pp,, ¢n, and N the steady state without nonlinear gain whenever possible.
Otherwise, i.e., outside the locking range, we start from the
Pt = <§AN(t) - 6F0P(t)> P(#) solitary laser steady-state. Since nonlinear gain describes the

1+ eP(t) intensity-induced change of the laser dynamics, the intensity

+ 29,/ P(t) Pa, (t) cos[¢p(t) — ¢, (t)] of the initial guess is used for calculating a modified inversion.

This inversion is then used for determining a new value for

) TwN(t) + (0 @ the laser light intensity. This procedure is repeated a few times

P(t) = §a£AN(t) until the desired accuracy is obtained.

In the case of a diode laser with conventional optical feed-

P, (¢ o . . " .
m(t) sinf¢(t) — ¢ (t)] + Fa(t) (5) back, twe external rqur_ld trip delay gives rise to e.xternal cavqy
modes" (ECMs). This is related to the corresponding round-trip
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phaseAwr being equal to a an integral multiple @fr. The TABLE |
number of ECMs involved is then roughly equa| to VALUES OF THEPARAMETERS USED IN THE CALCULATIONS

yrV1+a? Parameter description Quantity | Value Unit
Inverse photon lifetime Ty 7.2595x10' | 571
Injection current J 4.0635%x10'7 | 571

(see [2]). Hence, even for moderate amounts of feedback, th
may be already a lot of ECMs, where each ECM corresponds
a steady state of monochromatic laser operation. In the pres Threshold inversion N 7.74x10° -
case of phase-conjugate feedback, buildup of round-trip phas ¢y rier lifetime T, 2.0%10~? s
also possible, but locking to a nonzero integral multiplé-ofs

impossible, as follows from the steady state analysis descrit
above. Indeed, the only possible steady state correspond: Linear gain coefficient 4 1.19x10° s
locking of the laser to the pump frequency of PCM, in whicl Nonlinear gain coefficient € 3.57x10°8 | -
case the round-trip phase vanishes exactly.

Linewidth enhancement factor | « 3.0 -

[Il. STABILITY OF THE STEADY STATE where the coefficientd; are functions of the laser parameters

Considering small deviations from the steady state allo/f0d the steady state un_der consideration_. In_ the case of instan-
one to derive the local stability of the steady state and the |a§%?gous feedback, a th!“?' order polynomlal IS obtamed, where
spectra. The stability is found by studying the growth or dec&@ain some of the coefficients contain an exponential term. Ex-
of the deviations, while the noise spectra are found by lookimtyCit €xpressions for the coefficients can be found in [3] or
into how the spontaneous emission noise propagates in the 1488/\PPendix. Here, we clearly see why itis more difficultto de-
light fluctuations. The usual way to investigate this is to corfS'Mine the stability of a feedback system than that of a system
sider the rate equations when linearized around the steady stifthout time delay(_T = 0): W'thOUt delay,D(s) would be a
Concerning the stability, the information thus obtained is tHP!Ynomial ins, which can easily be solved. The presence of
local stability. In other words, if the fixed point turns out to bd!€ €xponentiat™™ makes analytical progress difficult, since
stable, there may still be other attractors, which may even hav #€neralD(s) = 0 has infinitely many roots which cannot be
larger basin of attraction. The spectra which are calculated usfify"d analytically. Therefore, we will resort to another method
linearized rate equations are accurate only when the noise flff Solve for the stability; that is, we do not calculate the roots

tuations are not so large that nonlinearities must be taken it/ iCity: , ,
account There is a simple case, however, where one can determine

Defining the vectorx(¢) as the deviation from the steadythe stability immediately: ifD(0) is negative, there must be at

statex(t) = (P(t) — P,, ¢(t) — 6ot — g, N(t) — Ny, Pay(t) — least one positive real root, and hence the system is unstable.

Py, —da(t) + Sot — ¢,), we find the linearized rate-equationsWithOUt noise, and assuming linear gain, the critedigio) > 0

which form a system of five coupled linear delay-differentidf €duivalent to the requirement thais(2¢, + arctan o) > 0.
equations, with the additional Langevin noise: Consequently, of the two solutions in (9), the one with the largest

inversion is always unstable. This does not imply stability for
x(t) = Ax(t) + A'x(t — 7) + F(t). (12) the other solution.
Because, in general, one cannot determine the stability easily,
We now calculate the stability and, therefore, disregard tiize exponential is sometimes approximated in the literature by
Langevin noise. The system can be formally solved usigpanding itto first ordere™ " ~ 1—s7. In many cases, this is
Laplace-transform techniques [13]. Laplace transformati@npoor approximation: when the RO undamps, oneshasi(2,

yields where for low feedback-rates will be close to the angular RO
frequency of the solitary laserg = +/T'oF,. Taking a realistic
(sI — A—e " A)x(s) = x(0) (13) value of the RO of 3 GHz27 already equals one for a cavity
length of less than a centimeter. Without trying to be exhaustive,
where! is the unit matrix. other approaches found in the literature are: assuming certain
The laser system, as described by (9), is locally stable farameters to be small [9], or a numerical search for the roots
and only if, all roots of the characteristic equati®f(s) = [14].We use an alternative approach by using the principle of the

det(s]—A—c °" A") = O are located in the negative half-planeargument in an exact determination of the fixed-point stability
that is, to the left of the imaginary axis. Our search for the stgsee the Appendix).
bility of the laser with phase-conjugate feedback is thus equiv-
alent to knowing whether or not all roots of the corresponding. Results
characteristic equation ha\_/e negative real parts. Writing out theThe technique outlined above is now used for calculating
full s-dependence ab(s) yields stability diagrams, where we use parameter values as listed in
5 4 3 2 Table |. These values, which are identical to those used by De-
D(s) = 5"+ dus” + d3s” + [dao + day exp(—s7)]s Tienneet al.[11], correspond to a laser pumped 5% above its
+ [d1o + di1 exp(—s7) + di2 exp(—2s7)]s solitary threshold, ang z /27 = 764 MHz. Variation ofc ande
+ [doo + do1 exp(—sT) + doz exp(—2s7)]  (14) confirms the well-known behavior; that is, a largegives rise
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120

tering of the reflected field, suppressing frequencies larger than
1/t,,. A similar behavior was found recently in the case of COF
[17]. More striking is the shifted location of the stability peaks
which, in view of the time delay in the mirror, resembles a situ-
ation of an external round-trip length larger than in an instanta-
neous mirror. The effective round-trip length enhancement is not
sharply defined, which reduces the quality of the resonance for
larget,,,. Since the relative importance of this increases when
gets smaller, this may explain why the peakvatr /2r = 0.5
is lower fort,,, =400 ps than for shorter response times.
: , We also investigate the behavior at moderate feedback. The
0 : ‘ : ‘ result is plotted in Fig. 1(b) [note the different scales along both
the X—Y -axes, compared to Fig. 1(a)]. The stability of the laser
is enhanced enormously by the sluggish mirror: for an instan-
@ taneous mirror there is only a small region for short cavities
2500 - where stability is found at higher values of the feedback rate,
‘ t,=0 whereas over the whole range oindicated in the figure, the
‘ o 1, =100 ps ] PCF laser is stable at higher feedback for mirror response times
tn, = 400 ps of 100 and 400 ps. DeTienme al.[11] already found in numer-
: e ical simulations that the standard deviation of the output power
. was much smaller for reflectivities on the order of 4%. Here, we
el e ——— - have shown that it corresponds to stable steady-state operation
i of the laser. In the instability region, DeTienne found pulsations
: of which the frequency increases witp. In Section IV-A, we
] will consider this resonance frequency in more detail and derive
an expression for it. The structure in the higher stability bound-
0 mmmmm T I T s PSSR aries of the right figure is caused by this frequency matching
0.0 0.5 1.0 1.5 an external round-trip resonance. Therefore, this is analogous
T (2n/wg) to the oscillations in Fig. 1(a).
(b) The influence of the detunin§, on the stability is shown
Fig. 1. Feedback rate, at which the laser changes stability as a functiodN Fig. 2. For weak feedback we see a narrow band of stable
of the cavity round-trip timer, normalized to the RO period. (a) The laser isoperation, but this band widens for higher feedback and, finally,
stable for low feedback and becomes unstable upon incregsirihe stability \ye find a large region of stable laser output, which is consistent
boundary depends periodically an (b) Increasing the feedback rate further, . . . . .
the laser becomes stable again, due to the sluggishness of the mirror. with Fig. 1(b). Notice that for an instantaneous mirror one has
not reported such large regions of stability. The general shapes

) - } ) of the curves for finitet,,, resemble the stability diagram of a
to a smaller region of stability, whereas the inclusion of noRyigde |aser with external optical injection [18]. Also, the low-

linear gai_n enhances th_e stability. In the graphs presented heggqpack part of the stability diagram withgr = 1 is very
the gain is taken to be linear. similar to the corresponding part of the injection laser stability
For the case of zero detunirig, = 0), Fig. 1 shows the sta- diagram. Again, we see here the destabilizing influence of the
bility diagram wheny, andr are varied for several values of theRO matching an external round-trip resonance [see Fig.2(b)].
mirror response time. Focusing firstop = O only, we seethat  As a last result, we show the effect of a higher pump current
for very small feedback rates, the laser is stable [see Fig. 1(2)h the stability diagrams in the, 4,,)-plane for zero detuning.
Upon increasing the feedback, it becomes unstable. Note the pgy. 3 has the same parameters as Fig. 1, except that the cur-
riodic modulation of the stability-edge curve with a lower staent is now 50% above threshold, instead of 5%. There are two
bility-limit when the RO matches an external round-trip resmajor changes: due to the higher RO frequency, there are more
nance; thatis, whear /2 is an integer. This was not seen bypscillations in the same rangeafand the stability at moderate
Agrawal and Gray [7] due to the above-mentioned lowest ordgfedback sets in at a higher feedback strength. When we calcu-
expansion of the exponential. On the other hand, it is similgjfte spectra in the next section, we take the laser to be pumped
to what was found by Ritter and Haug [9] and Mark [15] for &09% above threshold.
laser with COF, although they found higher stability tongues at Al stability diagrams were checked by direct numerical inte-
integral values ofwg7 /27. This behavior for the PCF from angration of rate equations (1) and (2) at several points of the sta-
instantaneous mirror has also been discussed by Murakami afigly diagrams, and no discrepancy between the two methods
Ohtsubo [16]. As yet, we have not found an explanation for thigas found.
apparent difference. In line with our results, Bochove [14] reports on stable be-
Comparing PCF from an instantaneous mirror with that frotmavior regardless of the feedback strength for certain values of
a slow mirror, we see that the stability enhances slightly withe “phase” in a laser with an instantaneous mirror. This could
increasing,,,. This is caused by the mirror-induced spectral fileorrespond to the channel of stable laser operation, as shown in

¥, (10787
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Fig. 3. Stability diagram of a PCF laser pumped 50% above threshold for: (a)
low and (b) moderate feedback rates. Due to the higher RO frequenay,

Fig. 2. Stability of the PCF laser as a functiomgfand the pump detuning .
g A e pump ng oscillates more rapidly withr than in Fig. 1.

The dashed-dotted curve corresponds to an instantaneous mitrgr g s =
0.5. All other curves havet,, = 100 ps. To the left of the solid line, no
steady-state solutions exust, independent of ¢, ; therefore, the solid line

indicates the locking range. (b) A close-up of the region near the origin of (a). IV. NOISE SPECTRA

In order to determine the optical spectra, we Fourier trans-
form the linearized rate-equations. This yields

Fig. 2. However, due to the different representation, his results
are sometimes difficult to compare with ours. Note that our main
concern here is the influence of the response time of the mirror,
which Bochove addresses very briefly. He has not performed
a systematic analysis of, and, for example, did not find the Here, x(w) is the Fourier transform of(t), andF(w) that of
upper stability regime as depicted in our Fig. 1(b). the vectorF(¢) containing the Langevin noise. From (15), one

Experimental work on phase-conjugate feedback in a diofieds how spontaneous emission affects the power and phase
laser was reported by Andersenal.[19]. In this experiment,
an externally pumped rubidium cell was used as a phase-conju-
gating mirror, where the spectral lineshape of the Rb transition ¢ 1 CNE N
at 780 nm is roughly equivalent to a finite response time be- SPw) = M[Mll(w)Fp(w) ~ Ma(iw)Fo(@)] - (16)
tween 100-300 ps, i.e., well within the range studied here. The _- 1 O LN
main result reported in the above-mentioned reference is a sta- bplw) = m[_Mm(w)Fp(w) + Maa(iw) Fy ()] (17)
bility diagram indicating the various types of experimentally ob-
served behavior as a map in the feedback level versus detuniviiereA(w) is the determinant afvl — A — ¢ =7 A’. In terms
plane. A narrow locking range extending into the negative defthe determinant))(s) found by Laplace transformation in the
tunings was observed, as well as the Hopf-bifurcation instabilisgability analysis of a laser with PCF (see Section Wjw) is
boundary, in agreement with our theory. The predicted returnéqual toD(iw). Furthermore}s;;(iw) are the minors ofwl —
stable locking for high feedback levels could not be observed.ih— ¢~*“” A’. The noise forces have correlation functions given
the experiment, simply because the spectral filtering of the fedult (F,,(t)F,(t')) = 2RP6(t — t'), (Fp(t)Fy(t')) = 0, and
back light did not allow the necessary high feedback strengthd,(¢) F,,(¥')) = R/2P-6(t—t'), and we arrive at the following

%(w) = (iwl — A— e “T A TF(w). (15)
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equations for the relative intensity noise (RIN) and frequency 10°

567

noise spectrum (FNS) in the steady state: 107 ~—— solitary
t =0
R 2 2 1 -2 " _ 400
Srin(w) = ——— [ |[M2| = + | M. _> 18 10 — t,= ps
RIN (W) N <| 2l P, | M1 | 3P% (18) )
UJ2 2 2 R =z 10 T
S = ——— | |M12|" 2RP, + |Ma|" — } (19 T
) = i (1Ml 2RP 4 Ml ) 19 B
107
A. Results 10
Using the expressions derived in the previous section, we cal- )
culate the RIN and FNS for the case of zero pump-detuning 10 0‘_5 1‘_0 ' 15

(6 = 0). We take the the laser to be pumped 50% above
threshold,/ = 5.805-10'7 s~1. We do this because 50% above

®/mg

threshold the intensity fluctuations due to spontaneous emissiin 4. RIN spectrum in the low feedback regime. The external delay time is
are much smaller than at 5% above threshold. Therefore, we &XZ Ps. corresponding tog7/2x = 0.5.

pect the linearized rate equations to give a better description.

Furthermore, we assume linear g&in= 0). The other parame- 10'

ters are taken from Table I. With these parameter values, the RO ——— solitary

frequencywg of the solitary laser is 2.415 GHz. The relevant 10° t,=0

stability diagrams for these parameters are sketched in Fig. 3. — t,=400ps P

In the first instance, we investigate the low-feedback stable re-

107
gion, assuming a feedback rate = 10 - 107 s~, and consider 2
the high-feedback steady state later on. = 107 i
In Figs. 4 and 5(a), the RIN and frequency noise spectra are
depicted for an instantaneous mirror and a PCM with a 400-ps -

response time. The delay time in the external cavity is 207 ps,
which implies a steady state ‘under the first peak’ in Fig. 3(a).
The spectra for the solitary laser are shown for comparison. The 10
spectra agree qualitatively with those obtained by Agrawal and
Gray [7] and Peterseat al. [20] for an instantaneous PCM.

There is one clear discrepancy, however. Compared with the
solitary laser, Agrawal and Gray see a shift of the RO frequency 10
in the laser with PCF, whereas Petersen and we do not see suc

a shift. We think this difference is due to the fact that [7] has 10°
approximated the exponentigt™ by 1+iw7, which we argued

can be problematic (see Section Ill). Note that the frequency
noise approaches zero when— 0. This is due to the phase- 2
compensating nature of a PCM, which fixes the phase in the longi-
run. The figures also show a slight enhancement of the RO peak
for the PCM with 400-ps response time. We address this point
later on. In the sequel, we consider only the calculation of the
FNS. We do this because, apart from the gross features seen it
the figures, the FNS and RIN spectrum show similar behavior;
for example, a resonance in the FNS is generally seen in the
RIN spectrum as well. Furthermore, the most important effect
of phase-conjugate feedback is on ffese

®/mg

@)

1.5

——— solitary
t,=0
— t,=400ps

(

/g

b)

1.5

The FNS when the mirror is placed twice as far from the las€ig. 5. The frequency noise spectrum in the low feedback regime. (a) The
(r = 404 pS,wRT/27r = 1) is plotted in Fig. 5(b). This spec- external delay time is such thatz7/27 = 0.5. (D) wr7/27 = 1.

trum is almost identical to the spectrum in Fig. 5(a), except for a

substantial rise in the RO peak for an instantaneous mirror. Cal-The variation of the height of the RO peak with the cavity
culation of several more noise spectra shows thatt,foe= 0, length is not seen when the PCM has a 400-ps response time.
the height of the RO peak changes periodically with the cavitye explain this by the fact that, for largg , the mirror tends to
length; itis highest whewr7/2r is an integer, and lowest whendiffuse the quality of the resonance because the cavity length is
wgrT/27 is a half-integer. The reason for this is clearly the sanmet so sharply defined anymore [see Fig. 1(a) and the discussion
as the origin of the modulation in the stability diagram Fig. 3here, and Fig. 3(a)]. Therefore, for largg, the round-trip reso-
when the RO matches an external round-trip resonance, the staaces are less well-defined. This phenomenon shows up when
bility is decreased. t», becomes of the order of the RO pericd414 ps). This is
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Fig. 6. The height of the RO peak as a function of the mirror response time @
t... The external delay times are 207 ps (dashed curyg; /27 = 0.5) and 10™
414 ps (solid curvep z7/27 = 1); see also Fig. 3.
10° +

seen clearly in Fig. 6, where we have plotted the height of the
RO peak as a function of the mirror response time for external 10°
delay timesr =207 ps (where the peak is relatively minimum) D
andr =414 ps (where the peak is relatively maximum). For i«

_4
mirror response times larger than about 200 ps, the height of the 10 L 1
RO peak in the FNS is almost insensitive to the external cavity /o B erE
10° - /) T, =4000.10,s ]
length. ---- %,=5000107s”]
We now come to the spectra of the laser in the upper stability 4 T %=600010°s
regime (see Fig. 3(b) for the relevant stability diagram). Because 107 0 ; 2 “1 é 8

the laser with PCF from aimstantaneousnirror does not be-
come stable for higher feedback-levels, we must consider finite
response timeg, <100 ps). The frequency noise spectra for a ()

solitary laser and a laser with a 100- or 400-ps PCM are depictﬁ)%07-10 gas)fll\;i éor a ggytaéy(lg)sglr\l %ﬂ% :gre 3;;';;235; Z\ﬁtrhaf;;?g:ﬁlfﬁ)
in Fig. 7(a) for a feedback ratg, = 4000- 107standal0-cm __ oS, T =007Ps. =
external cavity { =667 ps). Especially fof,,, = 100 ps, reso-

nances are seen. Also, Petersen [20] and Bochove [14] foun

®/mg

9\ feeling for the origin of the resonance@tcan be obtained

such oscillations in their spectra for an instantaneous mirrkc))r realizing that there is a frequency in the laser-with-PCF

with #,, = 0. These resonances are not related to the RO, bl}Itstem that is proportional to the feedback strength: the laser
correspond to the double-round-trip modes which were first d prop gt

scribed by AuYeunget al. [21]. Apart from the fact that the resonance frequency at a given inversigrwith respect to the

. . solitary laser frequency is given b
larger mirror response time almost washes out these resonances y q yi1sg y

att,, =400 ps, the spectra for 100 gnd 400 ps are equal. Com- w(N) = lag(N — N, (20)
parison with the spectrum of the solitary laser shows that the RO 2 . _ .

peak has disappeared. A broad resonance at about 2.7 timed\iée for zero pump-detuning, the inversidhdepends linearly
RO frequency is found instead. Furthermore, the overall noi88 7» [S€e (9)]. Combining (20) with (9) yields

level is decreased by several orders of magnitude. Q= o v (21)
In order to understand the origin of the peakat= 2.7wg, Vitaz?
we consider a short cavity.,( = 1cm,7 = 66.7 ps)and a Thisexplains why2 does not depend on other parameters. Even

mirror response time of 400 ps. Because of the short cavitye dependence anis very limited sincex/v/1 + «? is almost
length, the double round-trip resonances do not obscure @rgual to one when > 1. Below, we analyze the roots of the
peak under consideration so much, an effect which is enhanabdracteristic equatiaR(s) = 0, and this yields the same result
by the relatively large value af,,. With these parameters, the[(21)] when~, large.

FNS is shown in Fig. 7(b) for several feedback rates, rangingNow we try to find the dependence of the frequeficfound

from 3500 to6000 - 107 s—i. The frequency of the main in the frequency noise spectra at high feedback-rates from the
resonance increases with), whereas the total noise level ischaracteristic equatioD(s) = 0 as given by (14). This is ex-
drastically reduced. It turns out that, in good approximatien, pected to yield relevant information since the expression (19)
varies linearly withy,, (the dependence is slightly superlinear)for the FNS is inversely proportional ta?(w) = D?(iw).

at least in the interval considered. The variation of several otHarthe spectra calculated in this section, we did not find a no-
laser parameters does not reveal any substantial influence ortibeable dependence 6f on the cavity length up to cavities
frequency. as short as 0.5 cm. This motivates us to consider the case of
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4 all other inverse time scales: the inverse mirror response time,
the RO frequency, and the RO damping rate. The characteristic
equation then simplifies to

2 . 7 4

5% + 2, cos Bes* + fy]%s?’ =0. (22)
N ’%/ With 3, = — arctan o (which holds whers, = 0), the solu-
\2/ ol S . tions are
= -1 «
s=0 and s= +4 . 23
<\/1—|—a2 \/1—1—042)% 23)
-2 - - For large values of,, the frequency? therefore reads
[a%
= — 24
iTa (24)
4 ‘ 1 . . . .
* 15 10 05 0.0 05 in accordance with (21)2 depends linearly on,,, and this has

Re () been plotted in Fig. 8(b) (dashed>line). It can be seen that (21)
yields a good description whep, ~ 3wr.

@ This resonance explains the frequency dependence of the pul-
6 ‘ ‘ sations of the laser with a 400-ps response time PCM as found
by DeTienneet al. [11]. In a numerical simulation, they found
that the frequency of the pulsations (with a modulation depth of
100%) depends almost linearly on the feedback rate. We have
calculated the roots of the simplified (we have taken= 0)
characteristic equation using their parameters and found ex-
cellent agreement. Hence, the pulsating behavior of the laser
in the unstable (nonmonochromatic light emission) regime and
the resonance in the noise spectra in the stable regime have
- a common origin in the detuning between the eigenfrequency
(20) of the compound system and the actual lasing frequency as
6 posed by the mirror pump beams.

Yp/ g

(b)

V. CONCLUSION

Fig. 8. (a) Eigenvalues of the characteristic equation-fer 0 move in the We have performed an exact linear-stability-analysis of a
complex plane as a function of,. The crosses indicate the locations;at=  Single-mode semiconductor laser with filtered phase-conju-
0. (b) The imaginary part of the eigenvalue corresponding to the RO at Igygte feedback from a mirror that is pumped externally. In
feedback rate as a function of the feedback rate (solid curve). The dashed Jine sk
gives the high-feedback-rate limit, e Wea_lk-feedback pa_\r_t of theyp,f)-plane, the per|0d|c_
modulation of the stability-edge curve is due to the effective
external delay time being an integer multiple of the relaxation
zero cavity-lengthr = 0 in approximating the roots. In doing oscillation period. A finite mirror-response time tends to
so, D(s) simplifies considerably, and it is easy to follow thestapilize the system: the low-feedback stability-edge curve
roots of the resulting polynomial of degree five numerically aghifts upwards witht,,,. This can be understood physically
a function of,. The roots move in the complex plane as indifrom the filtering nature of the PCM. Upon further increase of
cated in Fig. 8(a). Three roots are found to move in the negfe feedback rate, the PCF laser becomes stable once more if
tive half-plane(Re(s) < 0), while the other two form a com- the mirror has a finite response time. This new stability region
plex conjugate pair which crosses the imaginary axis twice. Fg-in sharp contrast to the unstable behavior of a laser with an
cusing on the solution of this complex conjugate pair whiciystantaneously responding mirror with the same amount of
has a positive imaginary part, it is found that is has a negatidback. The stability areas for low and moderate feedback
real part and an imaginary part equaldg for v, = 0, cor- are not two distinct regimes, but they are connected in the
responding to a damped RO. Upon increasipgit moves to (v,, 7, 80)-space, which is apparent from tHe,, 6)-slice
the right and crosses the imaginary axis in a Hopf bifurcatioghown in Fig. 2(a). This picture, in a sense, unifies the two
which is the undamping of the RO. Then it bends upward (thgyures of Fig. 1.
frequency starts increasing) and, finally, it moves back to the For a diode laser with phase-conjugate feedback, we have cal-
negative half-plane (the laser becomes stable again) while figated noise spectra, where we focused on the frequency noise.
frequency keeps increasing. We have plotted the imaginary paffe height of the RO resonance for a laser with instantaneous
of the eigenvalue as a function-gf in the right of Fig. 8(b). For pCF is very sensitive to the external cavity length: when the
Yp = 4000- 10" s7! = 2.6wg, the imaginary part of the eigen-Ro period fits the external cavity an integral number of times,
value is2.6wr, in agreement with the. 7w found from Fig. 7. the height of the RO peak is enhanced. A finite mirror-response
Itis possible to find the relevant root &f(s) = 0 analytically time larger thar2w /w g effectively washes out this sensitive de-
for large feedback rates. We then assuypeo be larger than pendence onm. In the high feedback regime (which is found for
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finite ¢,,, only), the frequency noise is reduced drastically. Also, Im (s )
the main resonance is found to increase almost linearly with the
feedback rate and can easily obtain frequencies as highas

This resonance is attributed to the inversion dependence of the
intrinsic laser resonance, where the inversion is changed due to
the feedback. This situatioin is similar to the case of injection R
locking. It also explains the behavior of the pulsation frequency
found in simulations by DeTienret al.[11].

Re (s)
APPENDIX
PRINCIPLE OF THEARGUMENT

The method we use for testing whether the characteristic
equationD(s) = 0 has roots in the left half-plane (LHP)
is very much related to the Nyquist Analysis in engineering ds
sciences [22]. It has previously been applig¢d a laser with
conventional optical feedback by Jaskorgla and Lenstra (@
[23] and Coheret al.[10]. It is based on the following theorem Im (N(s) )
from the theory of functions of one complex variable [22]. b’

Theorem 1:If Cis a closed contour in the complexplane
and f(s) is an analytic function on and insid€, except for a
finite number of poles insid€’, and f(s) # 0 on C, then

% : J;((j)) ds=7—P (25)

where
vA total number of zeros insid€; )
P total number of poles insid€’
f(s) = df(s)/ds. ' ;

With the well-known expression for the winding number, one /‘}

sees that

Re (N(s)

Z-p— %[arg £ 26)
¢ (b)
SinceC is closed, the image df in the f(s)-plane is closed, Aim(NGs) )
and the net change in the angles f(s) is 27 times the number L N .
of encirclementsV of the origin in thef(s)-plane. The result
thatZ — P = N is often called therinciple of the argument \\
We apply this theorem to the functigf{s) given by

D(s) 3

o) =Gy @7 »
and introduce the variable = f(s). We choose the contour N/ & i Re (N(s)
C to be a semicircle in the right half-plane (RHP) and close it A ;
along the imaginary axis [see Fig. 9(a)]. In the liRit— oo, the ]
contourC encloses the entire RHP. The imagebtinderf in ! .
thew-plane is called". Clearly, f(s) does not have any poles in \ //
the RHP. Since the laser is stable if and only if the zero#sf | -
are in the LHP, the criterion for stability is that the imdgef C de
does not enclose the origin (the total number of encirclements
N is zero). Itis easily verified thaf(s*) = f*(s), and because ©
C is symmetric in the real axig; is too. Denoting the arc con- Fig. 9. (a) The contouf’ (in thes-plane) encloses the entire RHP in the limit
necting the points, b, andc by%, we only consider the image R — oo. The other two figures are sample contours in fhplane. (b) The

A, — . origin is not enclosed and the laser is therefore stable. (c) The laser is unstable
a’t/'’ of the upper partbc of the contourC'. The image of the gjnce the contour encloses the origin.
lower parteda is found by reflection in the real axis (see Fig. 9).

INotice that_ I;)iSt(_efan@t al.[22] defir_le aclockwisetraverse around a con- Since forRk very |arge, one haﬁ(s — Remb) ~ Rew, the seg-
tour as thepositivedirection, and all points to theght of a contour when it is

traversed in a prescribed direction as besnglosedy it. This is different from mentbc maps onto alm_O.St the same_segment 'mﬂmane' The
most mathematical literature. imaged’t’ of the remaining segment must now be such that
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the total image contour doesnotenclose the origin. In a situ-
ation wherezb maps as sketched in Fig. 9(b), the laser is stable,

whereas Fig. 9(c) represents an unstable situation.

Itis seen that wherfi(0) (which is a real number) is negative,
the origin is encircled by and the laser is unstable. This cor-

responds to the cade(0) < 0 in Section Ill.

The number of encirclements can be found by counting the

number of intersections af &’ with the negative real axis. &' i/

c11 = —%]SVS - 6PS%£;S) (41)
ey = cp, 2t ePS)([E(ir +6 ;(;\27 — Nl “2)
cr3 =48 — CPS%PSPS (43)
c33 = s 1 iPeSPS . (44)

crosses this half-line as many times going up as going down, the _
number of encirclements is zero and hence the laser is stable. WENe system determinai?(s) = det(sl — A — C) can, for

have determined the number of intersections numerically.

APPENDIX
COEFFICIENTS

finite response times, be written as

D(S) =5+ d434 + d383 + [d20 + doy eXp(—ST)]82
+ [dio + d11 exp(—s7) + d12 exp(—2s7)]s

First we write the Laplace transform of the linearized rate

equations as

(sI — A— C)x(s) = x(0) (28)

whereA is the part withe = 3 = 0. The matrixC represents the
contribution of noise and nonlinear gain. From this we derive the 8
inverse transfer matrix/ — A — C with (for noninstantaneous

PCF)
ail a2 aiz —air a2
a21 a1 23 —a21 ai11
A= asy 0 a33 0 0 (29)
—agqe” %" 0 0 44 0
0 —agqqc” " 0 0 Q44
and
C11 0 C13 0 0
0o 0 0 00
C= C31 0 C33 0 0 (30)
0o 0 0 00
0o 0 0 00

For instantaneous PCF, the matriceandC are given by

an(l—e™7) an(l+e°7) a3
A= CLQl(l — C_ST) a11(1 + C_ST) 23 (31)
asi 0 ass
and
ci1 0 c3
C=| 0 0 O (32)
ca1 0 c33
The coefficientss;; andc;; are given by
a11 = —7YpCOS Bs (33)
agy = zgs sin (3, (34)
az1 = —[Lo + &(Ns — Nuw)] (35)
ais = =2y, P, sin f3, (36)
a1z = &0, (37)
1
a3 = 5065 (38)
1
agzz = — <T1 + §Ps> (39)
1
44 = —— (40)

trn

+ [doo + do1 exp(—s7) + dga exp(—2s7)]  (45)
where the coefficientd;; are given by
2
2 1 2C'
ds = —I'13's1 + I's3 <Cl - t_> ‘- +B (47)

1 1
dao = — {F13F31(2 + A'tp) + a3 <Btm -2C" + —>

m m

C
_op+ t—} (48)
D
91 = — (49)
tnl
1
dip = _tT[Flgl“gl(l + 2A't,,) — B +1'33(2Bt,, — C")]
(50)
1 D
di = - <F13F31Al + 33D — t—> (51)
2
~
dio = —tTP (52)
1
doo = _tT(Fl?)F?)lA/ +I'33B) (53)
1
do1 = _tT(Fl?)F?)lA/ +'33D) (54)
La3y2
do2 = 2 L (55)

In order to facilitate the above expressions we introduced the
parameter%/, B,C,D,T'11,I'13,'31, andr@'s3:

'3 = a3+ ci3 (56)
31 = ag1 + 31 (57)
33 = agz + c33 (58)
F13A/ = apzaz3 — ayl'13 (59)
B =ajic11 + ’Yi (60)

C' =2a11 + 11 (61)
D=ajcy. (62)

The system determinant for a laser with instantaneous feedback
is obtained from (31) and (32). The resultitigrd-order poly-
nominalcan be found from (45) by multiplication witf}, and
taking the limit¢,,, — O.
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For the calculation of the noise spectra, we need the minors

Mi1(s), M12(s), M21(s),, and M (s). We express the minor

M“(S) as
M;(s) = mij,434 + mij,333 + [ 20 + Mij 21 eXP(—ST)]S2

+ [mij 10 + mij 11 exp(—sT)]s

+ [miLoo + m;j.01 eXp(—ST)]. (63)
The coefficients (for noninstantaneous PCF) are given by
mii14 = 1 (64)
2
mi13 = t_ - H (65)
2H 1
=J- == 66
M11,20 o B (66)
a
mi1 21 = —t—ll (67)
1 H
=— |2 - — 68
e = < tm> (58)
aii1 1
mii11 = — Fas — — (69)
trn, trn
I
1100 = 5 (70)
I
mii,01 = tT’ (71)
mi2,4 =0 (72)
Mi23 = —a21 (73)
2
mi220 = — :21 -F (74)
a
Mi2,21 = t—Ql (75)
2F a1
= —— — == 76
M12,10 P (76)
1 I'g
Mi2,11 = a2 <% — t—m) (77)
FE
M12,00 = <25 (78)
aox I’
miz2,01 = — 2;2 33, (79)
ma1,4 =0 (80)
M1 3 = —a1z (81)
2
M21,20 = A12 <F33 - t_> (82)
a
Mol 21 = _t_12 (83)
1 2r
m21,10 = —a12 <7 - 33) (84)
trn t"l
a1 1
ma1 11 = —— | ez — — (85)
trn trn
J
m21,00 = 25 (86)
J
ma1,01 = 2 (87)
maze =1 (88)
2
mo23 = — — G (89)

2G 1
maz 0 = I — . + oy (90)
m22.21 = ? (91)
1 G
M22,10 = — <2F - —> (92)
trn trn
1
M2 11 = — <—I+ E) (93)
t'rn t'rn
g
m22,00 = tT (94)
I
m22,01 = T (95)

The following additional parameters were introduced for nota-
tional convenience:

I'i=an+ecn (96)
E = al'3; —anlss (97)
F=I11T33 -3l (98)
G =T+ 33 (99)
H=a;;+ 133 (100)

I =a11's3 (101)
J = a12l'33. (102)

The minors obtained with instantaneous PCF are again obtained
by multiplication with#2, and taking the limit,,, — 0.
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