678 research outputs found

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.

    Get PDF
    Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies

    Prinos poznavanju bakarnih katalizatora za hidriranje

    Get PDF
    Inaktiviranje t. zv. bakarnih kromita kod katalitickih hidriranja pripisuje se obično redukciji CuO u Cu2O, odnosno mozda i u metal Cu. Hidriranjem estera uljne kiseline ovdje je dokazano, da kako metalicki bakar (Raney-Cu), tako i specijalno pripravljeni Cu2O mogu dobro sluziti za proizvodnju oktadekanola. Za ovu reakciju se dosad smatralo, da je bakarni kromit jedini prikladni oblik bakarnih katalizatora. Nasi nalazi govore u prilog pretpostavci R. Schencka, da je kataliticki aktivna tvar bakarnog kromita metalni bakar, koji nastaje in situ kod samog hidriranja

    Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder

    Get PDF
    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections

    Cell-laden hydrogel as a clinical-relevant 3D model for analyzing neuroblastoma growth, immunophenotype, and susceptibility to therapies

    Get PDF
    High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-y-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-y induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions.Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way

    A Gel-Chromatographic and Light Scattering Study of the Salmonella typhi Endotoxin

    Get PDF
    The endotoxin of Salmonella typhi, strain 0-901, was isolated by extraction with hypertonic (1 M) sodium chloride solutions and studied by gel-chromatography and light scattering methods. The gel-chromatographic separation was performed on Sepharose 2B, Sepharose 4B and Sephadex G-200 gels, and the fractionated material was monitored by ultraviolet and phenol-sulfuric acid colorimetry as well as by a photometric latex agglutination test. The extracted material consisted of two components: one was the high molecular weight endotoxin and the other a protein-polysaccharide complex of a molecular weight lower than 66,000 dalton. The light scattering experiments of endotoxin extracts showed the average molecular weights from 1.9 to 4.9 million dalton. The separation of the low molecular weight proteinic component was attempted by thermal denaturation, but this had to be abandoned owing to the denaturation and degradation of endotoxin. A high molecular weight endotoxin component was isolated by elution on a Sephadex G-200 column and had the molecular weight of 5.6 million dalton, which was in good accord with the value previously determined for a Boivin extraction sample. The high molecular weight endotoxin sample proved to be a highly polydispersed material. From the estimates of various averages of gyration radii it has been concluded that the particles of this sample have a more compact structurE than those of the Boivin extraction sample, possibly due to the tertiary structuring of polypeptide chains in the protein-lipopolysaccharide complex of the endotoxin particle

    Identification, characterisation and expression analysis of natural killer receptor genes in Chlamydia pecorum infected koalas (Phascolarctos cinereus)

    Get PDF
    BACKGROUND: Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. METHODS: In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). RESULTS: We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. CONCLUSION: We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection
    corecore