4,635 research outputs found

    Towards Microscopic Understanding of the Phonon Bottleneck

    Full text link
    The problem of the phonon bottleneck in the relaxation of two-level systems (spins) to a narrow group of resonant phonons via emission-absorption processes is investigated from the first principles. It is shown that the kinetic approach based on the Pauli master equation is invalid because of the narrow distribution of the phonons exchanging their energy with the spins. This results in a long-memory effect that can be best taken into account by introducing an additional dynamical variable corresponding to the nondiagonal matrix elements responsible for spin-phonon correlation. The resulting system of dynamical equations describes the phonon-bottleneck plateau in the spin excitation, as well as a gap in the spin-phonon spectrum for any finite concentration of spins. On the other hand, it does not accurately render the lineshape of emitted phonons and still needs improving.Comment: 13 Phys. Rev. pages, 5 figure captions (7 figures

    On Pauli Pairs

    Get PDF
    The state of a system in classical mechanics can be uniquely reconstructed if we know the positions and the momenta of all its parts. In 1958 Pauli has conjectured that the same holds for quantum mechanical systems. The conjecture turned out to be wrong. In this paper we provide a new set of examples of Pauli pairs, being the pairs of quantum states indistinguishable by measuring the spatial location and momentum. In particular, we construct a new set of spatially localized Pauli pairs.Comment: submitted to JM

    Masses of the physical mesons from an effective QCD--Hamiltonian

    Get PDF
    The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only in the qqˉq\bar q space, is solved approximately. After coordinate transformation to usual momentum space and Fourier transformation to configuration space a second order differential equation is derived. This retarded Schr\"odinger equation is solved by variational methods and semi-analytical expressions for the masses of all 30 pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromdynamics without free parameter, the agreement with experiment is remarkable, but the approximation scheme is not adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant αs(Q2)\alpha_s(Q^2), in a manner similar but not equal to the one of Richardson in the equal usual-time quantization. Its value is fixed at the Z mass and the 5 flavor quark masses are determined by a fit to the vector meson quarkonia.Comment: 18 pages, 4 Postscript figure

    A Test of CPT Symmetry in K^0 vs \bar{K}^0 to \pi^+\pi^-\pi^0 Decays

    Full text link
    I show that the CP-violating asymmetry in K^0 vs \bar{K}^0 \to \pi^+\pi^-\pi^0 decays differs from that in K_L \to \pi^+\pi^-, K_L \to \pi^0\pi^0 or the semileptonic K_L transitions, if there exists CPT violation in K^0-\bar{K}^0 mixing. A delicate measurement of this difference at a super flavor factory (e.g., the \phi factory) will provide us with a robust test of CPT symmetry in the neutral kaon system.Comment: 4 pages, 1 figure. To appear in the Proceedings of the International PHIPSI09 Workshop, October 2009, Beijing, Chin

    Interference in Bohmian Mechanics with Complex Action

    Full text link
    In recent years, intensive effort has gone into developing numerical tools for exact quantum mechanical calculations that are based on Bohmian mechanics. As part of this effort we have recently developed as alternative formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP {125}, 231103 (2006)]. In the alternative formulation there is a significant reduction in the magnitude of the quantum force as compared with the conventional Bohmian formulation, at the price of propagating complex trajectories. In this paper we show that Bohmian mechanics with complex action is able to overcome the main computational limitation of conventional Bohmian methods -- the propagation of wavefunctions once nodes set in. In the vicinity of nodes, the quantum force in conventional Bohmian formulations exhibits rapid oscillations that pose severe difficulties for existing numerical schemes. We show that within complex Bohmian mechanics, multiple complex initial conditions can lead to the same real final position, allowing for the description of nodes as a sum of the contribution from two or more crossing trajectories. The idea is illustrated on the reflection amplitude from a one-dimensional Eckart barrier. We believe that trajectory crossing, although in contradiction to the conventional Bohmian trajectory interpretation, provides an important new tool for dealing with the nodal problem in Bohmian methods

    The two-dimensional hydrogen atom revisited

    Get PDF
    The bound state energy eigenvalues for the two-dimensional Kepler problem are found to be degenerate. This "accidental" degeneracy is due to the existence of a two-dimensional analogue of the quantum-mechanical Runge-Lenz vector. Reformulating the problem in momentum space leads to an integral form of the Schroedinger equation. This equation is solved by projecting the two-dimensional momentum space onto the surface of a three-dimensional sphere. The eigenfunctions are then expanded in terms of spherical harmonics, and this leads to an integral relation in terms of special functions which has not previously been tabulated. The dynamical symmetry of the problem is also considered, and it is shown that the two components of the Runge-Lenz vector in real space correspond to the generators of infinitesimal rotations about the respective coordinate axes in momentum space.Comment: 10 pages, no figures, RevTex

    Covariant Pauli-Villars Regularization of Quantum Gravity at the One Loop Order

    Full text link
    We study a regularization of the Pauli-Villars kind of the one loop gravitational divergences in any dimension. The Pauli-Villars fields are massive particles coupled to gravity in a covariant and nonminimal way, namely one real tensor and one complex vector. The gauge is fixed by means of the unusual gauge-fixing that gives the same effective action as in the context of the background field method. Indeed, with the background field method it is simple to see that the regularization effectively works. On the other hand, we show that in the usual formalism (non background) the regularization cannot work with each gauge-fixing.In particular, it does not work with the usual one. Moreover, we show that, under a suitable choice of the Pauli-Villars coefficients, the terms divergent in the Pauli-Villars masses can be corrected by the Pauli-Villars fields themselves. In dimension four, there is no need to add counterterms quadratic in the curvature tensor to the Einstein action (which would be equivalent to the introduction of new coupling constants). The technique also works when matter is coupled to gravity. We discuss the possible consequences of this approach, in particular the renormalization of Newton's coupling constant and the appearance of two parameters in the effective action, that seem to have physical implications.Comment: 26 pages, LaTeX, SISSA/ISAS 73/93/E

    The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge

    Full text link
    A general analytic procedure is developed for the post-Newtonian limit of f(R)f(R)-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to (v/c)4(v/c)^4 order is shown. Considering the Taylor expansion of a generic function ff it is possible to parameterize the solutions by derivatives of ff. At Newtonian order, (v/c)2(v/c)^2, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential (tttt-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to (v/c)4(v/c)^4 order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit fRf\rightarrow R is considered the f(R)f(R)-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.Comment: 16 pages, 10 figure

    Splitting of the pi - rho spectrum in a renormalized light-cone QCD-inspired model

    Get PDF
    We show that the splitting between the light pseudo-scalar and vector meson states is due to the strong short-range attraction in the ^1S_0 sector which makes the pion and the kaon light particles. We use a light-cone QCD-inspired model of the mass squared operator with harmonic confinement and a Dirac-delta interaction. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction.Comment: 9 pages, 2 figures, revtex, accepted by Phys. Rev. D; Corrected typo
    corecore